Skip to main content

A Structural Approach to Subset-Sum Problems

  • Chapter

Part of the book series: Bolyai Society Mathematical Studies ((BSMS,volume 19))

Abstract

We discuss a structural approach to subset-sum problems in additive combinatorics. The core of this approach are Freiman-type structural theorems, many of which will be presented through the paper. These results have applications in various areas, such as number theory, combinatorics and mathematical physics.

V. Vu is supported by NSF Career Grant 0635606.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. E. Andrews, The theory of partitions, Cambridge University Press (1998).

    Google Scholar 

  2. N. Alon, Independent sets in regular graphs and sum-free subsets of abelian groups, Israel Journal Math., 73 (1991), 247–256.

    Article  MATH  MathSciNet  Google Scholar 

  3. N. Alon, Combinatorial Nullstellensatz, Recent trend in combinatorics (Mátraháza, 1995), Combin. Probab. Comput., 8 (1999), 7–29.

    Article  MATH  MathSciNet  Google Scholar 

  4. N. Alon, Subset sums, Journal of Number Theory, 27 (1987), 196–205.

    Article  MATH  MathSciNet  Google Scholar 

  5. N. Alon and G. Freiman, On sums of subsets of a set of integers, Combinatorica, 8 (1988), 297–306.

    Article  MATH  MathSciNet  Google Scholar 

  6. Z. D. Bai, Circular law, Ann. Probab., 25 (1997), no. 1, 494–529.

    Article  MATH  MathSciNet  Google Scholar 

  7. Z. D. Bai and J. Silverstein, Spectral analysis of large dimensional random matrices, Mathematics Monograph Series, 2, Science Press, Beijing (2006).

    Google Scholar 

  8. A. Bialostocki and P. Dierker, On Erdős-GinzburgiZiv theorem and the Ramsey number for stars and matchings, Discrete Mathematics, 110 (1992), 1–8.

    Article  MATH  MathSciNet  Google Scholar 

  9. N. Calkin, On the number of sum-free sets, Bull. London Math. Soc., 22 (1990), 141–144.

    Article  MATH  MathSciNet  Google Scholar 

  10. J.W. S Cassels, On the representation of integers as the sums of distinct summands taken from a fixed set, Acta Sci. Math. Szeged, 21 (1960), 111–124.

    MATH  MathSciNet  Google Scholar 

  11. P. Cameron and P. Erdős, On the number of sets of integers with various properties, Number Theory (Banff, AB 1988), 61–79, de Gruyter, Berlin (1990).

    Google Scholar 

  12. D. da Silva and Y. O. Hamidoune, Cyclic spaces for Grassmann derivatives and additive theory, Bull. London Math. Soc., 26 (1994), no. 2, 140–146.

    Article  MATH  MathSciNet  Google Scholar 

  13. G. T. Diderrich, An addition theorem for abelian groups of order pq, J. Number Theory, 7 (1975), 33–48.

    Article  MATH  MathSciNet  Google Scholar 

  14. G. T. Diderrich and H. B. Mann, Combinatorial problems in finite Abelian groups, Survey of combinatorial theory (Proc. Internat. Sympos., Colorado State Univ., Fort Collins, Colo., 1971), pp. 95–100. North-Holland, Amsterdam, 1973.

    Google Scholar 

  15. J-M. Deshouilers, Quand seule la sous-somme vide est nulle modulo p. (French) [When only the empty subsum is zero modulo p] J. Thor. Nombres Bordeaux, 19 (2007), no. 1, 71–79.

    Google Scholar 

  16. J.-M. Deshouillers, Lower bound concerning subset sum wich do not cover all the residues modulo p, Hardy-Ramanujan Journal, Vol. 28 (2005), 30–34.

    MATH  MathSciNet  Google Scholar 

  17. J.-M. Deshouillers and G. Freiman, When subset-sums do not cover all the residues modulo p, Journal of Number Theory, 104 (2004), 255–262.

    Article  MATH  MathSciNet  Google Scholar 

  18. P. Erdős, On a lemma of Littlewood and Offord, Bull. Amer. Math. Soc. 51 (1945), 898–902.

    Article  MathSciNet  Google Scholar 

  19. P. Erdős, Some problems and results on combinatorial number theory, Proceeding of the first China conference in Combinatorics (1986).

    Google Scholar 

  20. P. Erdős, On the representation of large interges as sums of distinct summands taken from a fixed set, Acta. Arith., 7 (1962), 345–354.

    MathSciNet  Google Scholar 

  21. P. Erdős and R. Graham, Old and new problems and results in combinatorial number theory. Monographies de L’Enseignement Mathmatique [Monographs of L’Enseignement Mathmatique], 28. Universit de Genve, L’Enseignement Mathmatique, Geneva, 1980.

    Google Scholar 

  22. P. Erdős and A. Granville, Unpublished.

    Google Scholar 

  23. P. Erdős and H. Heilbronn, On the addition of residue classes mod p, Acta Arith., 9 (1964), 149–159.

    MathSciNet  Google Scholar 

  24. P. Erdős and L. Moser, P. Erdős, Extremal problems in number theory. 1965 Proc. Sympos. Pure Math., Vol. VIII pp. 181–189 Amer. Math. Soc., Providence, R.I.

    Google Scholar 

  25. J. Folkman, On the representation of integers as sums of distinct terms from a fixed sequence, Canad. J. Math., 18 (1966), 643–655.

    MATH  MathSciNet  Google Scholar 

  26. P. Frankl and Z. Füredi, Solution of the Littlewood-Offord problem in high dimensions. Ann. of Math., (2) 128 (1988), no. 2, 259–270.

    Article  MathSciNet  Google Scholar 

  27. G. Freiman, Foundations of a structural theory of set addition. Translated from the Russian. Translations of Mathematical Monographs, Vol 37. American Mathematical Society, Providence, R. I., 1973. vii+108 pp.

    Google Scholar 

  28. G. Freiman, New analytical results in subset sum problem, Discrete mathematics, 114 (1993), 205–218.

    Article  MATH  MathSciNet  Google Scholar 

  29. W. Gao and Y. O. Hamidoune, On additive bases, Acta Arith., 88 (1999), no. 3, 233–237.

    MATH  MathSciNet  Google Scholar 

  30. W. Gao, Y. O. Hamidoune, A. Llad and O. Serra, Covering a finite abelian group by subset sums, Combinatorica, 23 (2003), no. 4, 599–611.

    Article  MATH  MathSciNet  Google Scholar 

  31. V. Girko, Circle law, (Russian) Teor. Veroyatnost. i Primenen., 29 (1984), no. 4, 669–679.

    MATH  MathSciNet  Google Scholar 

  32. F. Götze and A. N. Tikhomirov, On the circular law, preprint.

    Google Scholar 

  33. [33] F. Götze and A. N. Tikhomirov, The Circular Law for Random Matrices, preprint.

    Google Scholar 

  34. B. Green, The Cameron-Erdős Conjecture Bull. London Math. Soc., 36 (2004), no. 6, 769–778.

    Article  MATH  MathSciNet  Google Scholar 

  35. B. Green and I. Ruzsa, Freiman’s theorem in an arbitrary abelian group, Jour. London Math. Soc., 75 (2007), no. 1, 163–175.

    Article  MATH  MathSciNet  Google Scholar 

  36. J. Griggs, J. Lagarias, A. Odlyzko and J. Shearer, On the tightest packing of sums of vectors, European J. Combin., 4 (1983), no. 3, 231–236.

    MATH  MathSciNet  Google Scholar 

  37. Y. Hamidoune and G. Zémor, On zero-free subset sums, Acta Arithmetica, 78 (1996), no. 2, 143–152.

    MathSciNet  Google Scholar 

  38. G. Katona, On a conjecture of Erdős and a stronger form of Sperner’s theorem, Studia Sci. Math. Hungar., 1 (1966), 59–63.

    MATH  MathSciNet  Google Scholar 

  39. D. Kleitman, On a lemma of Littlewood and Offord on the distributions of linear combinations of vectors, Advances in Math., 5 (1970), 155–157 (1970).

    Article  MATH  MathSciNet  Google Scholar 

  40. E. Lipkin, On representation of r-powers by subset sums, Acta Arithmetica, 52 (1989), 114–130.

    MathSciNet  Google Scholar 

  41. J. E. Littlewood and A. C. Offord, On the number of real roots of a random algebraic equation. III. Rec. Math. [Mat. Sbornik] N.S., 12 (1943), 277–286.

    MathSciNet  Google Scholar 

  42. P. Erdős, A. Ginzburg and A. Ziv, Theorem in the additive number theory, Bull. Res. Council Israel, 10F (1961), 41–43.

    Google Scholar 

  43. W. D. Gao, A. Panigrahi and R. Thangadurai, On the structure of p-zero-sum-free sequences and its application to a variant of Erdős-Ginzburg-Ziv theorem, Proc. Indian Acad. Sci. vol. 115, No. 1 (2005), 67–77.

    MathSciNet  Google Scholar 

  44. G. Halász, Estimates for the concentration function of combinatorial number theory and probability, Period. Math. Hungar., 8 (1977), no. 3–4, 197–211.

    Article  MathSciNet  Google Scholar 

  45. N. Hegyvári, On the representation of integers as sums of distinct terms from a fixed set, Acta Arith., 92 (2000), no. 2, 99–104.

    MATH  MathSciNet  Google Scholar 

  46. T. Luczak and T. Schoen, On the maximal density of sum-free sets, Acta Arith., 95 (2000), no. 3, 225–229.

    MATH  MathSciNet  Google Scholar 

  47. H. B. Mann and Y. F. Wou, An addition theorem for the elementary abelian group of type (p, p), Monatsh. Math., 102 (1986), no. 4, 273–308.

    Article  MATH  MathSciNet  Google Scholar 

  48. M. Nathanson, Elementary methods in number theory, Springer 2000.

    Google Scholar 

  49. H. H. Nguyen, E. Szemerédi and V. Vu, Subset sums in Z p, to appear in Acta Arithmetica.

    Google Scholar 

  50. H. H. Nguyen and V. Vu, Classification theorems for sumsets modulo a prime, submitted.

    Google Scholar 

  51. H. Nguyen and V. Vu, On square-sum-free sets, in preparation.

    Google Scholar 

  52. J. E. Olson, Sums of sets of group elements, Acta Arith., 28 (1975/76), no. 2, 147–156.

    MATH  MathSciNet  Google Scholar 

  53. J. E. Olson, An addition theorem modulo p, J. Combinatorial Theory, 5 (1968), 45–52.

    Article  MATH  MathSciNet  Google Scholar 

  54. G. Pan and W. Zhou, Circular law, Extreme singular values and potential theory, preprint.

    Google Scholar 

  55. A. Sárközi, Finite addition theorems I, J. Number Theory, 32 (1989), 114–130.

    Article  MathSciNet  Google Scholar 

  56. A. Sárközy, Finite Addition Theorems, II, Journal of Number Theory, 48 (1994), 197–218.

    Article  MATH  MathSciNet  Google Scholar 

  57. A. Sárközy and C. Pomerance, Combinatorial number theory, Chapter 20, Handbook of Combinatorics (eds. R. Graham, M. Grötschel and L. Lovász), North-Holland 1995.

    Google Scholar 

  58. A. Sárközy and E. Szemerédi, Über ein Problem von Erdős und Moser, Acta Arithmetica, 11 (1965), 205–208.

    MATH  MathSciNet  Google Scholar 

  59. R. Stanley, Weyl groups, the hard Lefschetz theorem, and the Sperner property, SIAM J. Algebraic Discrete Methods, 1 (1980), no. 2, 168–184.

    Article  MATH  MathSciNet  Google Scholar 

  60. E. Szemerédi, On a conjecture of Erdős and Heilbronn, Acta Arith., 17 (1970), 227–229.

    MATH  MathSciNet  Google Scholar 

  61. Endre Szemerédi and V. Vu, Long arithmetic progression in sumsets and the number of x-free sets, Proceeding of London Math Society, 90 (2005), 273–296.

    Article  MATH  Google Scholar 

  62. E. Szemerédi and V. Vu, Finite and infinite arithmetic progression in sumsets, Annals of Math, 163 (2006), 1–35.

    Article  MATH  Google Scholar 

  63. E. Szemerédi and V. Vu, Long arithmetic progressions in sumsets: Thresholds and Bounds, Journal of the A.M.S, 19 (2006), no. 1, 119–169.

    MATH  Google Scholar 

  64. T. Tao and V. Vu, Additive Combinatorics, Cambridge Univ. Press (2006).

    Google Scholar 

  65. T. Tao and V. Vu, Random matrices: The Circular Law, Communication in Contemporary Mathematics, 10 (2008), 261–307.

    Article  MATH  MathSciNet  Google Scholar 

  66. T. Tao and V. Vu, Inverse Littlewood-Offord theorems and the condition number of random matrices, to appear in Annals of Mathematics.

    Google Scholar 

  67. T. Tao and V. Vu, paper in preparation.

    Google Scholar 

  68. V. Vu, Structure of large incomplete sets in abelian groups, to appear in Combinatorica.

    Google Scholar 

  69. Wigner, On the distribution of the roots of certain symmetric matrices, Annals of Mathematics, (2) 67 (1958), 325–327.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

To Kati and Laci

Rights and permissions

Reprints and permissions

Copyright information

© 2008 János Bolyai Mathematical Society and Springer-Verlag

About this chapter

Cite this chapter

Vu, V. (2008). A Structural Approach to Subset-Sum Problems. In: Grötschel, M., Katona, G.O.H., Sági, G. (eds) Building Bridges. Bolyai Society Mathematical Studies, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85221-6_19

Download citation

Publish with us

Policies and ethics