Skip to main content

Intraoperative Neurophysiological Monitoring During Corrective Spine Surgery in the Growing Child

  • Chapter
The Growing Spine

Abstract

Operative management of scoliosis has undergone dynamic evolution over the course of the previous half century, particularly in the immediate past decade. Advances in multisegmental instrumentation and improved surgical technique have facilitated treatment of complex deformities, even in young children with progressive early onset scoliosis who are unresponsive to nonoperative treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bose, B, Sestokas AK, Schwartz DM (2007) Neurophysiological detection of iatrogenic C5 nerve injury during anterior cervical spine surgery. J Neurosurg 6:381–385

    Google Scholar 

  2. Campbell RM Jr, Smith MD, Mayes TC et al (2004) The effects of opening wedge thoracostomy on thoracic insufficiency syndrome associated with fused ribs and congenital scoliosis. J Bone Joint Surg Am 86-A(8):1659–1674

    PubMed  Google Scholar 

  3. Cheh G, Lenke LG, Padberg AM et al (2008) Loss of spinal cord monitoring signals in children during thoracic kyphosis correction with spinal osteotomy: why does it occur and what should you do? Spine 33:1093–1099

    Article  PubMed  Google Scholar 

  4. Chen Z (2004) The effects of isoflurane and propofol on intraoperative neurophysiological monitoring during spinal surgery. J Clin Monit Comp 18:303–308

    Article  Google Scholar 

  5. Deletis V (1993) Intraoperative monitoring of the functional integrity of the motor pathways. In: Devinski O, Berie A, Dogali M (eds) Electrical and magnetic stimulation of the brain and spinal cord. Advances in neurology, vol 63. Raven, New York, pp 201–214

    Google Scholar 

  6. Deletis V (2001) The “motor” inaccuracy in neurogenic motor evoked potentials. [Editorial]. Clin Neurophys 112:1365–1366

    Article  CAS  Google Scholar 

  7. Devlin VJ, Schwartz DM (2007) Intraoperative neurophysiologic monitoring during spinal surgery. J Am Acad Orthop Surg 15:549–560

    PubMed  Google Scholar 

  8. DiCindio S, Schwartz DM (2005) Anesthetic management for pediatric spinal fusion: implications of advances in spinal cord monitoring. Anesthesiol Clin N Am 23:765–787

    Article  Google Scholar 

  9. Emans JB, Caubet, Francois J et al (2005) The treatment of spine and chest wall deformities with fused ribs by expansion thoracostomy and insertion of vertical expandable prosthetic titanium rib: growth of thoracic spine and improvement of lung volumes. Spine 30:S58–S68

    Article  PubMed  Google Scholar 

  10. Fan D, Schwartz D, Vaccaro A et al (2002) Intraoperative neurophysiologic detection of iatrogenic C5 nerve root injury during laminectomy for cervical compression myelopathy. Spine 27(22):2499–2502

    Article  PubMed  Google Scholar 

  11. Hicks G (2006) The intraoperative gastrocnemius H-reflex predicts post-anesthetic clonus in patients during surgeries of the spine. J Clin Monit Comp 20:59(A)

    Google Scholar 

  12. Hilibrand A, Schwartz D, Sethuraman V et al (2004) Comparison of transcranial electric motor and somatosensory evoked potential monitoring during cervical spine surgery. J Bone Joint Surg Am 86:1248–1253

    PubMed  Google Scholar 

  13. Kalkman CJ, Traast H, Zuurmond WW et al (1991) Differential effects of propofol and nitrous-oxide on posterior tibial nerve cortical somatosensory evoked potentials during alfentanil anesthesia. Br J Anaesth 66:483–489

    Article  PubMed  CAS  Google Scholar 

  14. Kelleher MO, Tan G, Sarjeant R et al (2008) Predictive value of intraoperative neurophysiological monitoring during cervical spine surgery: a prospective analysis of 1055 consecutive patients. J Neurosurg: Spine 8:215–221

    Article  Google Scholar 

  15. Kincaid MS, Souter MJ, Bryan PD et al (2007) Somatosensory and motor evoked potentials during sevoflurane and propofol anesthesia. Paper Presented at the Annual Meeting of the American Society of Anesthesiologists. San Francisco

    Google Scholar 

  16. Leppanen R, Maguire J, Wallace S et al (1995) Intraoperative lower extremity muscle activity as an adjunct to conventional somatosensory evoked potentials and descending neurogenic monitoring in idiopathic scoliosis. Spine 20:1872–1877

    Article  PubMed  CAS  Google Scholar 

  17. Leppanen R, Madigan R, Sears C et al (1999) Intraoperative collision studies demonstrate descending spinal cord stimulated evoked potentials are mediated through common pathways. J Cin Neurphysiol 16:170

    Article  Google Scholar 

  18. Leppanen R (2004) From the electrodiagnostic lab … Where we see that spinal cord stimulated descending neurogenic evoked potentials(DNEPs) are mediated by antidromic sensory rather than motor systems. Spine J 4(6):712–715

    Article  Google Scholar 

  19. Lieberman JA, Lyon R, Feiner J et al (2008) The efficacy of motor evoked potentials in fixed sagital imbalance deformity correction surgery. Spine 33:414–424

    Article  Google Scholar 

  20. Liu FHC, Wong HK, Chia CP et al (2005) Effects of isoflurane and propofol on cortical somatosensory evoked potentials during comparable depth of anaesthesia as guided by bispectral index. Brit J Anaesth 94:193–197

    Article  PubMed  CAS  Google Scholar 

  21. MacDonald DB (2006) Intraoperative motor evoked potential monitoring: update and overview. J Clin Monit Comput 20:348

    Article  Google Scholar 

  22. Mahmoud M, Senthikumar S, Sestokas AK et al (2007) Loss of transcrabnial motor evoked potentials during pediatric spine surgery with dexmedetomidine. Anesthesiology 106:393–396

    Article  PubMed  Google Scholar 

  23. Minahan RE, Sepkuty JP, Lesser RP et al (2001) Anterior spinal cord injury with preserved neurogenic ‘motor’ evoked potentials. Clin Neurophysiol 112:1442–1450

    Article  PubMed  CAS  Google Scholar 

  24. Scheufler K-M, Zentner J (2002) Total intravenous anesthesia for intraoperative monitoring of motor pathways: an integral view combining clinical and experimental data. J Neurosurg 96:571–579

    Article  PubMed  CAS  Google Scholar 

  25. Schwartz DM, Drummond D, Ecker M (1996) Influence of rigid spinal instrumentation on the neurogenic motor evoked potential. J Spine Dis 9:439–445

    CAS  Google Scholar 

  26. Schwartz DM, Schwartz JA, Pratt RE et al (1997) Influence of nitrous-oxide on posterior tibial nerve cortical somatosensory evoked potentials. J Spin Disord 10:80–86

    CAS  Google Scholar 

  27. Schwartz D, Drummond D, Hahn M et al (2000) Prevention of positional brachial plexopathy during surgical correction of scoliosis. J Spinal Dis 13(2):178–182

    Article  CAS  Google Scholar 

  28. Schwartz D, Sestokas A (2002) A systems-based algorithmic approach to intraoperative neurophysiological monitoring during spinal surgery. Sem Spine Surg 14(2):36–145

    Google Scholar 

  29. Schwartz D, Albert T, Sestokas et al (2006) Neurophysiological identification of position-induced neurologic injury during anterior cervical spine surgery. J Clin Mont Comput 20(6):437–444

    Article  Google Scholar 

  30. Schwartz DM, Auerbach JD, Dormans JP et al (2007) Neurophysiologic detection of impending spinal cord injury during surgery for adolescent idiopathic scoliosis: a comparison of transcranial electric motor and somatosensory evoked potential monitoring. J Bone Joint Surg 89: 2440–2449

    Article  PubMed  Google Scholar 

  31. Skaggs DL, Choi PD, Rice C, Emans J, Song KM, Smith JT, Campbell RM (2009) Efficacy of intraoperative neurologic monitoring in surgery involving a vertical expandable prosthetic titanium rib for early-onset spinal deformity. J Bone Joint Surg Am 91:1657–1663

    Article  PubMed  Google Scholar 

  32. Sloan TB, Heyer EJ (2002) Anesthesia for intraoperative physiologic monitoring of the spinal cord. J Clin Neurophys 19:430–443

    Article  Google Scholar 

  33. Su CF, Hahhighi SS, Oro JJ et al (1992) “Backfiring” in spinal cord monitoring. High thoracic spinal cord stimulation evoked sciatic response by antidromic sensory pathway conduction, not motor tract conduction. Spine 17: 504–508

    Article  PubMed  CAS  Google Scholar 

  34. Succato DJ (2008) In response to Devlin VJ, Schwartz DM: Inraoperative monitoring during spinal surgery. Letter to the Editor. J Am Acad Orthop Surg 16:61–62

    Google Scholar 

  35. Toleikis J, Skelly J, Carlvin A et al (2000) Spinally elicited peripheral nerve responses are sensory rather than motor. Clin Neurophysiol 111:736–742

    Article  PubMed  CAS  Google Scholar 

  36. Toleikis JR, Toleikis SC, Braverman B (2006) Monitoring motor evoked potentials: is TIVA really necessary. J Clin Monit Comp 20(A):64–65

    Google Scholar 

  37. Toleikis JR, Toleikis SC (2007) Intraoperative monitoring of spinal cord function with H-reflex responses: The new standard. Paper presented at the Annual Meeting of the American Society of Anesthesiologists. pp 13–17

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel M. Schwartz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schwartz, D.M., Sestokas, A.K., Dormans, J.P. (2011). Intraoperative Neurophysiological Monitoring During Corrective Spine Surgery in the Growing Child. In: Akbarnia, B.A., Yazici, M., Thompson, G.H. (eds) The Growing Spine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85207-0_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85207-0_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85206-3

  • Online ISBN: 978-3-540-85207-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics