Skip to main content
Book cover

Shock Waves pp 287–292Cite as

High-fidelity numerical study on the on-set condition of oblique detonation wave cell structures

  • Conference paper
  • 2291 Accesses

Summary

A comprehensive numerical study was carried out to identify the on-set condition of the cell structures of oblique detonation waves (ODWs). Mach 7 incoming flow was considered with all other flow variables were fixed except the flow turning angles varying from 35° to 38°. For a given flow conditions theoretical maximum turning angle is 38.2° where the oblique detonation wave may be stabilized. The effects of grid resolution were tested using grids from 500 × 250 to 4,005 × 1,800. The numerical smoked foil records exhibits the detonation cell structures with dual triple points running opposite directions for the 36° to 38° turning angles. As the turning angle get closer to the maximum angle the cell structures gets finer and the oscillatory behavior of the primary triple point was observed. The thermal occlusion behind the oblique detonation wave was observed for the 38° turning angle.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.T. Pratt, J.W. Humphrey, D.E. Glenn, J. Prop. Pow. 7(5) (1991) 837-845.

    Article  Google Scholar 

  2. J. E. Shepherd, in: J. Buckmaster, T.L. Jackson, A. Kumar (Eds.), Combustion in High-Speed Flows, Kluwer, Dordrecht, (1994) 373.

    Google Scholar 

  3. E.K. Dabora, D. Desbordes, C. Guerraud, H.G. Wagner, Prog. Aero. Astro 133 (1991) 187-204.

    Google Scholar 

  4. C. Viguier, A. Gourara, D. Desbordes, B. Deshaies, Proc. Combust. Inst. 27 (1998) 2207-2214.

    Google Scholar 

  5. H.F. Lehr, Astronautica Acta 17 (1972) 589-597.

    Google Scholar 

  6. M.J. Kaneshige, J.E. Shepherd, Proc. Combust. Inst. 26 (1996) 3015-3022.

    Google Scholar 

  7. J. Kasahara, T. Fujiwara, T. Endo, T. Arai, AIAA J. 39 (2001) 1553-1561.

    Article  Google Scholar 

  8. C.I. Morris, M.R. Kamel, R.K. Hanson, Proc. Combust. Inst. 27 (1998) 2157-2164.

    Google Scholar 

  9. C. Li, K. Kailasanath, E.S. Oran, Phys. Fluids 6(4) (1994) 1600-1611.

    Article  MATH  Google Scholar 

  10. A.A. Thaker, H.K. Chelliah, Combust. Theory Modeling 1 (1997) 347-376.

    Article  MATH  Google Scholar 

  11. M.V. Papalexandris, Combust. Flame 120 (2000) 526-538.

    Article  Google Scholar 

  12. L.F. Figueira da Silva, B. Deshaies, Combust. Flame 121 (2000) 152-166.

    Google Scholar 

  13. G. Fusina, J.P. Sislian, B. Parent, AIAA J. 43(7) (2005) 1591-1604.

    Article  Google Scholar 

  14. J.-Y. Choi, I.-S Jeung, Y. Yoon, Y., Proc. Intl. Symp. Shock Waves 22 (1999) 333-337.

    Google Scholar 

  15. J.-Y. Choi, D.-W. Kim, I.-S. Jeung, I.-S., F. Ma., V. Yang. V., Proc. Combust. Inst. 31 (2007) 2473-2480.

    Article  Google Scholar 

  16. Y. Daimon, A. Matsuo, J. Kasahara, AIAA-2007-1171 (2007)

    Google Scholar 

  17. J.-Y. Choi, F.H. Ma, V. Yang, AIAA Paper 2005-1174 (2005).

    Google Scholar 

  18. J.-Y. Choi, I.-S Jeung, Y. Yoon, Y., AIAA J. 38(7) (2000) 1179-1187.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Choi, J., Shin, E., Cho, D., Jeung, I. (2009). High-fidelity numerical study on the on-set condition of oblique detonation wave cell structures. In: Hannemann, K., Seiler, F. (eds) Shock Waves. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85168-4_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85168-4_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85167-7

  • Online ISBN: 978-3-540-85168-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics