Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 158))

  • 1388 Accesses

Summary

Higher order Voronoi diagrams provide a useful tool for studying problems where more than one nearest site is of interest. Understanding and visualizing higher order Voronoi diagrams is more difficult than ordinary Voronoi diagrams and requires intelligent solutions. In this chapter we discuss several rendering techniques using color, line and texture to visualize higher order Voronoi diagrams in two and three dimensions. Such approaches have several interesting characteristics such as providing useful multi-dimensional information when even a small portion of the figure is available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, P.K., de Berg, M., Matouek, J., Schwarzkopf, O.: Constructing levels in arrangements and higher order Voronoi diagrams. In: Proceedings of the 10th Annual Symposium on Computational Geometry, pp. 67–75 (1994)

    Google Scholar 

  2. Aurenhammer, F.: A new duality result concerning Voronoi diagrams. Discrete Computational Geometry 5(3), 243–254 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aurenhammer, F.: Voronoi diagrams - a survey of a fundamental geometric data structure. ACM Computing Surveys 23(3), 345–405 (1991)

    Article  Google Scholar 

  4. Bair, A., House, D., Ware, C.: Perceptually optimizing textures for layered surfaces. In: Proceedings of the Symposium on Applied Perception in Graphics and Visualization, pp. 67–74 (2005)

    Google Scholar 

  5. Boada, I., Coll, N., Madern, N.: Sellarès. Approximations of 3D generalized Voronoi diagrams. In: Proceedings of the European Workshop on Computational Geometry (March 2005)

    Google Scholar 

  6. Chazelle, B., Edelsbrunner, H.: An improved algorithm for constructing kth-order Voronoi diagrams. In: Proceedings of the 1st Annual Symposium on Computational Geometry, pp. 228–234 (1985)

    Google Scholar 

  7. Clarkson, K.L.: New applications of random sampling in computational geometry. Discrete and Computational Geometry 2(2), 195–222 (1987)

    MATH  MathSciNet  Google Scholar 

  8. Cooksey, C.J.: Tyrian purple: 6,6-dibromoindigo and related compounds. Molecules 6(9), 736–769 (2001)

    Article  Google Scholar 

  9. Deussen, O., Hiller, S., van Overveld, C., Strothotte, T.: Floating points: A method for computing stipple drawings. Computer Graphics Forum 19(3), 40–51 (2000)

    Article  Google Scholar 

  10. Fischer, I., Gotsman, C.: Fast approximation of high order Voronoi diagrams and distance transforms on the GPU. Technical report, Harvard University (March 2005)

    Google Scholar 

  11. Gold, C.M.: Spatial ordering of voronoi networks and their use in terrain data base management. In: Proceedings of Auto-Carto 8, pp. 185–194 (1987)

    Google Scholar 

  12. Haeberli, P.E.: Paint by numbers: Abstract image representations. In: Proceedings of SIGGRAPH 1990, pp. 207–214 (1990)

    Google Scholar 

  13. Hausner, A.: Simulating decorative mosaics. In: Proceedings of SIGGRAPH 2001, pp. 573–580 (2001)

    Google Scholar 

  14. Hoff, K.E., Keyser, J., Lin, M., Manocha, D., Culver, T.: Fast computation of generalized Voronoi diagrams using graphics hardware. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 277–286 (1999)

    Google Scholar 

  15. House, D., Ware, C.: A method for the perceptual optimization of complex visualizations. In: Proceedings of Advanced Visual Interfaces, pp. 148–155 (2002)

    Google Scholar 

  16. Kaplan, C.S.: Voronoi Diagrams and Ornamental Design. In: Proceedings of the 1st Annual Symposium of the International Society for the Arts, Mathematics, and Architecture, pp. 277–283 (1999)

    Google Scholar 

  17. Lavender, D., Bowyer, A., Davenport, J., Wallis, A., Woodwark, J.: Voronoi diagrams of set-theoretic solid models. IEEE Computer Graphics and Applications 12(5), 69–77 (1992)

    Article  Google Scholar 

  18. Lee, D.T.: On k-nearest neighbor Voronoi diagrams in the plane. IEEE Transactions on Computers 31, 478–487 (1982)

    Article  MATH  Google Scholar 

  19. Levin, G.: Segmentation and symptom (2000), http://www.flong.com/projects/zoo/

  20. Li, Z., Zhu, Q., Gold, C.M.: Digital Terrain Modelling - Principles and methodology. CRC Press, Boca Raton (2005)

    Google Scholar 

  21. Miles, R.E., Maillardet, R.J.: The basic structures of Voronoi and generalized Voronoi polygons. Journal of Applied Probability 19A, 97–111 (1982)

    Article  MathSciNet  Google Scholar 

  22. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial tessellations: Concepts and applications of Voronoi diagrams. In: Probability and Statistics, 2nd edn., p. 671. Wiley, Chichester (2000)

    Google Scholar 

  23. Ostromoukhov, V.: Pseudo-random halftone screening for color and black and white printing. In: Proceedings of the 9th congress on advances in non-impact printing technologies, pp. 579–582 (1993)

    Google Scholar 

  24. Ostromoukhov, V., Hersch, R.: Stochastic clustered-dot dithering. Journal of Electronic Imaging, 8 (October 1999)

    Google Scholar 

  25. Palmer, J.D.: Using line and texture to visualize higher-order Voronoi diagrams. In: Proceedings of the International Symposium on Voronoi Diagrams, pp. 166–172 (2006)

    Google Scholar 

  26. Palmer, J.D.: Experimental results on kth nearest neighbor distance functions and subdivision vertexes. In: Proceedings of the Sixth Interdisciplinary Conference of the International Society of Arts Mathematics and Architecture, pp. 183–186 (2007)

    Google Scholar 

  27. Palmer, J.D.: High-order Voronoi sculpture. In: Proceedings of the International Symposium on Voronoi Diagrams (2007)

    Google Scholar 

  28. Perlin, K.: An image synthesizer. In: Proceedings of the 12th Annual Conference on Computer Graphics and Interactive Techniques, pp. 287–296 (1985)

    Google Scholar 

  29. Secord, A.: Weighted voronoi stippling. In: NPAR 2002: Proceedings of the 2nd International Symposium on Non-photorealistic Animation and Rendering, pp. 37–43 (2002)

    Google Scholar 

  30. Snibbe, S.: Boundary functions (1998), http://www.snibbe.com/scott/dynamic/

  31. Snibbe, S.: Dynamic system series (1998), http://www.snibbe.com/scott/dynamic/

  32. Sud, A., Govindaraju, N., Manocha, D.: Interactive computation of discrete generalized Voronoi diagrams using range culling. In: Proceedings of the International Symposium on Voronoi diagrams in Science and Engineering (2005)

    Google Scholar 

  33. Telea, A.C., van Wijk, J.J.: Visualization of generalized Voronoi diagrams. In: Proceedings of the Joint Eurographics and IEEE TCVG Symposium on Visualization (2001)

    Google Scholar 

  34. Thibault, D., Gold, C.M.: Terrain reconstruction from contours by skeleton retraction. In: Proceedings of the Joint ISPRS Commission Workshop, Dynamic and Multidimensional GIS, pp. 23–27 (1999)

    Google Scholar 

  35. Trefftz, C., Szakas, J.: Parallel algorithms to find the Voronoi diagram and the order-k Voronoi diagram. In: International Parallel and Distributed Processing Symposium (2003)

    Google Scholar 

  36. Vleugels, J., Overmars, M.H.: Approximating Voronoi diagrams of convex sites in any dimension. International Journal of Computational Geometry and Applications 8(2), 201–222 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  37. Webster, A.: Callan’s canyons and Voronoi’s cells. Nature 391, 430 (1998)

    Article  Google Scholar 

  38. Worley, S.: A cellular texture basis function. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 291–294 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Palmer, J.D. (2009). Higher Order Voronoi Diagrams and Distance Functions in Art and Visualization. In: Gavrilova, M.L. (eds) Generalized Voronoi Diagram: A Geometry-Based Approach to Computational Intelligence. Studies in Computational Intelligence, vol 158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85126-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85126-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85125-7

  • Online ISBN: 978-3-540-85126-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics