Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 158))

Abstract

Computational Geometry and Intelligent Computing are the two areas that correlate to each other in a variety of ways. The goal of computational geometry is a two or three-dimensional object representation and development of efficient algorithms for manipulating such an object. The goal of Intelligent Computing is design of a process that will solve the problem in efficient way, often utilizing the same principles that cognitive processes and human decision making are based on.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apu, R., Gavrilova, M.: An Efficient Swarm Neighborhood Management for a 3D Tactical Simulator IEEE-CS proceedings. In: ISVD 2006, Banff, AB, Canada, pp. 85–93 (2006)

    Google Scholar 

  2. Bardis, G., Miaoulis, G., Plemenos, D.: Learning User Preferences at the Declarative and Geometric Description Level. In: 3IA 2005, Limoges (France) (May 11-12, 2005)

    Google Scholar 

  3. Bebis, G., Deaconu, T., Georiopoulous, M.: Fingerprint Identification using Delaunay Triangulation. In: ICIIS 1999, Maryland, pp. 452–459 (1999)

    Google Scholar 

  4. Benitez, A., Ramirez, M.C., Vallejo, D.: Collision Detection Using Sphere-Tree Construction. In: 15th International Conference on Electronics, Communications and Computers (CONIELECOMP 2005), pp. 286–291 (2005)

    Google Scholar 

  5. Berg, M.D., et al.: Computational Geometry: Algorithms and Applications. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  6. Broz, P., Kolingerova, I., Zitka, P., Apu, R.A., Gavrilova, M.L.: Path planning in dynamic environment using an adaptive mesh. In: ACM SIGGRAPH Proceedings OF SCCG 2007, Spring Conference on Computer Graphics 2007, pp. 172–178 (2007)

    Google Scholar 

  7. Capelli, R., Maio, D., Maltoni, D.: Synthetic Fingerprint-Database Generation. In: ICPR 2002, Canada, vol. 3, pp. 369–376 (2002)

    Google Scholar 

  8. Cignoni, P., Montani, C., Scopigno, R.: A Fast Divide and Conquer Delaunay Triangulation Algorithm in Ed. In: Computer-Aided Design, vol. 30(5), pp. 333–341. Elsevier Science, Amsterdam (1998)

    Google Scholar 

  9. Doty, K.L., et al.: An Autonomous Micro-Submarine Swarm and Miniature Submarine Delivery System Concept. In: Proceedings of the Florida Conference on Recent Advanced in Robotics (Melbourne, Florida), pp. 131–138 (1998)

    Google Scholar 

  10. Duchaineauy, M., et al.: ROAMing Terrain: Real-Time Optimally Adapting Meshes. In: IEEE Visualization 1997, pp. 81–88 (1997)

    Google Scholar 

  11. Edelsbrunner, H., Preparata, F.P., West, D.B.: Tetrahedrizing point sets in three dimensions. J. Symbolic Computation 10(3-4), 335–347 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  12. Erdahl, B.: Reducible and irreducible Voronoi polytopes for lattices. In: CMS Winter meeting, Calgary, AB, Canada (2005)

    Google Scholar 

  13. Franc, M., Skala, V.: Fast Algorithm for Triangular Mesh Simplification Based on Vertex decimation. In: Proceedings of CCGM2002. LNCS. Springer, Heidelberg (2002)

    Google Scholar 

  14. Gavrilova, M., Rokne, J.: Updating the Topology of the Dynamic Voronoi Diagram for Circles in Euclidean d-dimensional Space. Journal of Computer Aided Geometric Design 20, 231–242 (2003)

    MATH  MathSciNet  Google Scholar 

  15. Gavrilova, M.L.: Computational Geometry and Image Processing in Biometrics: on the Path to Convergence. In: Image Pattern Recognition: Synthesis and Analysis in Biometrics, ch. 4, pp. 103–133. World Scientific Publishers, Singapore (2007)

    Google Scholar 

  16. Gavrilova, M. L.: IEEE_CS Book of Proceedings of the 3rd International Symposium on Voronoi Diagrams in Science and Engineering, Banff, AB, Canada. IEEE-CS, Softcover, 270 pages, 2006.

    Google Scholar 

  17. Kolingerová, I.: Probabilistic Methods for Triangulated Models. In: 8th Int. Conference on Computer Graphics and Artificial Intelligence 3IA 2005, Limoges, France, pp. 93–106 (2005)

    Google Scholar 

  18. Lee, T., Lin, Y.C., Lin, L., Sun, Y.: Fast Feature based metamorphosis and operator design. In: Proceeding of Eurographics 1998, Computer Graphics Forum, vol. 17(3), pp. 15–22 (1999)

    Google Scholar 

  19. Li, S., Liu, X., Wu, E.: Feature-Based Visibility-Driven CLOD for Terrain. In: Proc. Pacific Graphics 2003, pp. 313–322. IEEE Press, Los Alamitos (2003)

    Google Scholar 

  20. Liang, X.F., Asano, T.: A fast denoising method for binary fingerprint image. In: IASTED, Spain, pp. 309–313 (2004)

    Google Scholar 

  21. Medioni, G., Waupotitsch, R.: Face recognition and modeling in 3D. In: IEEE Int. Workshop on Analysis and Modeling of Faces and Gestures, pp. 232–233 (2003)

    Google Scholar 

  22. Moriguchi, M., Sugihara, K.: A new initialization method for constructing centroidal Voronoi Tessellations on Surface Meshes. In: ISVD 2006, pp. 159–165. IEEE-CS Press, Los Alamitos (2006)

    Google Scholar 

  23. Mücke, E., Saias, I., Zhu, B.: Fast Randomized Point Location without Preprocessing in Two and Three-dimensional Delaunay Triangulations. In: Proceedings of the 12th Annual Symposium on Computational Geometry, pp. 274–283 (1996)

    Google Scholar 

  24. Okabe, A., Boots, B., Sugihara, K.: Spatial tessellation concepts and applications of Voronoi diagrams. Wiley & Sons, Chichester (1992)

    Google Scholar 

  25. Raupp, S., Thalmann, D.: Hierarchical Model for Real Time Simulation of Virtual Human Crowds. IEEE Transactions on Visualization and Computer Graphics 7(2), 152–164 (2001)

    Article  Google Scholar 

  26. Resnick, M.: Turtles, Termites, and Traffic Jams Explorations in Massively Parallel Microworlds. MIT Press, Cambridge (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gavrilova, M.L. (2009). Computational Geometry Methods and Intelligent Computing. In: Gavrilova, M.L. (eds) Generalized Voronoi Diagram: A Geometry-Based Approach to Computational Intelligence. Studies in Computational Intelligence, vol 158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85126-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85126-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85125-7

  • Online ISBN: 978-3-540-85126-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics