Skip to main content

Differential Algebra and System Modeling in Cellular Biology

  • Conference paper
Book cover Algebraic Biology (AB 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5147))

Included in the following conference series:

Abstract

Among all the modeling approaches dedicated to cellular biology, differential algebra is particularly related to the well-established one based on nonlinear differential equations. In this paper, it is shown that differential algebra makes one of the model reduction methods both simple and algorithmic: the quasi-steady state approximation theory, in the particular setting of generalized chemical reactions systems. This recent breakthrough may suggest some evolution of modeling techniques based on nonlinear differential equations, by incorporating the reduction hypotheses in the models. Potential improvements of parameters fitting methods are discussed too.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Leloup, J.C., Goldbeter, A.: Modeling the molecular regulatory mechanism of circadian rhythms in Drosophila. Bioessays 22, 84–93 (2000)

    Article  Google Scholar 

  2. Fall, C.P., Marland, E.S., Wagner, J.M., Tyson, J.J.: Computational Cell Biology. Interdisciplinary Applied Mathematics, vol. 20. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  3. Conrad, E.D., Tyson, J.J.: Modeling Molecular Interaction Networks with Nonlinear Differential Equations. In: Szallasi, Z., Stelling, J., Periwal, V. (eds.) System Modeling in Cellular Biology: From Concepts to Nuts and Bolts, pp. 97–124. The MIT Press, Cambridge (2006)

    Google Scholar 

  4. de Jong, H.: Modeling and Simulation of Genetic Regulatory Systems: A Literature Review. Journal of Computational Biology 9(1), 67–103 (2002)

    Article  Google Scholar 

  5. de Jong, H., Geiselmann, J., Hernandez, C., Page, M.: Genetic Network Analyzer: qualitative simulation of genetic regulatory networks. Bioinformatics 19(3), 336–344 (2003)

    Article  Google Scholar 

  6. de Jong, H., Ropers, D.: Qualitative Approaches to the Analysis of Genetic Regulatory Networks. In: Szallasi, Z., Stelling, J., Periwal, V. (eds.) System Modeling in Cellular Biology: From Concepts to Nuts and Bolts, pp. 125–147. The MIT Press, Cambridge (2006)

    Google Scholar 

  7. Saka, Y., Smith, J.C.: A mechanism for the sharp transition of morphogen gradient interpretation in Xenopus. BMC Dev. Biol. 7(47) (2007)

    Google Scholar 

  8. von Dassow, G., Meir, E., Munro, E.M., Odell, G.M.: The segment polarity network is a robust developmental module. Nature 406, 188–192 (2000)

    Article  Google Scholar 

  9. von Dassow, G., Meir, E.: Exploring modularity with dynamical models of gene networks. In: Schlosser, G., Wagner, G.P. (eds.) Modularity in Development and Evolution, pp. 245–287. University of Chicago Press (2003)

    Google Scholar 

  10. Horn, F., Jackson, R.: General mass action kinetics. Archive for Rational Mechanics and Analysis 47, 81–116 (1972)

    Article  MathSciNet  Google Scholar 

  11. Okino, M.S., Mavrovouniotis, M.L.: Simplification of Mathematical Models of Chemical Reaction Systems. Chemical Reviews 98(2), 391–408 (1998)

    Article  Google Scholar 

  12. Boulier, F., Lefranc, M., Lemaire, F., Morant, P.E.: Model Reduction of Chemical Reaction Systems using Elimination. In: The international conference MACIS 2007 (2007), http://hal.archives-ouvertes.fr/hal-00184558

  13. Denis-Vidal, L., Joly-Blanchard, G., Noiret, C.: System identifiability (symbolic computation) and parameter estimation (numerical computation). Numerical Algorithms 34, 282–292 (2003)

    Article  MathSciNet  Google Scholar 

  14. Boulier, F., Denis-Vidal, L., Henin, T., Lemaire, F.: LÉPISME. In: Proceedings of the ICPSS conference (2004); Submitted to the Journal of Symbolic Computation, http://hal.archives-ouvertes.fr/hal-00140368

  15. Boulier, F.: Differential Elimination and Biological Modelling. Radon Series on Computational and Applied Mathematics (Gröbner Bases in Symbolic Analysis), vol. 2, pp. 111–139 (October 2007), http://hal.archives-ouvertes.fr/hal-00139364

  16. Ritt, J.F.: Differential Algebra. Dover Publications Inc, New York (1950), http://www.ams.org/online_bks/coll33

    MATH  Google Scholar 

  17. Kolchin, E.R.: Differential Algebra and Algebraic Groups. Academic Press, New York (1973)

    MATH  Google Scholar 

  18. Wang, D.: Elimination Practice: Software Tools and Applications. Imperial College Press, London (2003)

    Google Scholar 

  19. Hairer, E., Wanner, G.: Solving ordinary differential equations II. Stiff and Differential–Algebraic Problems, 2nd edn. Springer Series in Computational Mathematics, vol. 14. Springer, New York (1996)

    MATH  Google Scholar 

  20. Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Representation for the radical of a finitely generated differential ideal. In: ISSAC 1995: Proceedings of the 1995 international symposium on Symbolic and algebraic computation, pp. 158–166. ACM Press, New York (1995), http://hal.archives-ouvertes.fr/hal-00138020

    Chapter  Google Scholar 

  21. Boulier, F., Lemaire, F.: A computer scientist point of view on Hilbert’s differential theorem of zeros. Algebra in Engineering, Communication and Computing (submitted, 2007), http://hal.archives-ouvertes.fr/hal-00170091

  22. Kokotovic, P., Khalil, H.K., O’Reilly, J.: Singular Perturbation Methods in Control: Analysis and Design. Classics in Applied Mathematics 25 (1999)

    Google Scholar 

  23. Van Breusegem, V., Bastin, G.: Reduced order dynamical modelling of reaction systems: a singular perturbation approach. In: Proceedings of the 30th IEEE Conference on Decision and Control, Brighton, England, pp. 1049–1054 (December 1991)

    Google Scholar 

  24. Vora, N., Daoutidis, P.: Nonlinear model reduction of chemical reaction systems. AIChE Journal 47(10), 2320–2332 (2001)

    Article  Google Scholar 

  25. Bennet, M.R., Volfson, D., Tsimring, L., Hasty, J.: Transient Dynamics of Genetic Regulatory Networks. Biophysical Journal 92, 3501–3512 (2007)

    Article  Google Scholar 

  26. Maquet, F.: Master Research training report. University Lille I (to appear, 2008)

    Google Scholar 

  27. Boulier, F., Lefranc, M., Lemaire, F., Morant, P.E., Ürgüplü, A.: On proving the absence of oscillations in models of genetic circuits. In: Anai, H., Horimoto, K., Kutsia, T. (eds.) Ab 2007. LNCS, vol. 4545, pp. 66–80. Springer, Heidelberg (2007), http://hal.archives-ouvertes.fr/hal-00139667

    Chapter  Google Scholar 

  28. Boulier, F., Lefranc, M., Lemaire, F., Morant, P.E.: Applying a rigorous quasi-steady state approximation method for proving the absence of oscillations in models of genetic circuits. In: Algebraic Biology 2008 (submitted, 2008), http://hal.archives-ouvertes.fr/hal-00213327

  29. Niu, W., Wang, D.: Algebraic Approaches to Stability Analysis of Biological Systems. Mathematics in Computer Science 1, 507–539 (2008)

    Article  MATH  Google Scholar 

  30. Noiret, C.: Utilisation du calcul formel pour l’identifiabilité de modèles paramétriques et nouveaux algorithmes en estimation de paramètres. PhD thesis, Université de Technologie de Compiègne (2000)

    Google Scholar 

  31. Boulier, F.: The BLAD libraries (2004), http://www.lifl.fr/~boulier/BLAD

  32. Walter, É.: Identifiability of State Space Models. Lecture Notes in Biomathematics, vol. 46. Springer, Heidelberg (1982)

    MATH  Google Scholar 

  33. Ollivier, F.: Le problème de l’identifiabilité structurelle globale : approche théorique, méthodes effectives et bornes de complexité. PhD thesis, École Polytechnique, Palaiseau, France (1990)

    Google Scholar 

  34. Diop, S., Fliess, M.: Nonlinear observability, identifiability, and persistent trajectories. In: Proc. 30th CDC, Brighton, pp. 714–719 (1991)

    Google Scholar 

  35. Ljung, L., Glad, S.T.: On global identifiability for arbitrary model parametrisations. Automatica 30, 265–276 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  36. Sedoglavic, A.: A Probabilistic Algorithm to Test Local Algebraic Observability in Polynomial Time. Journal of Symb. Comp. 33(5), 735–755 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  37. Boulier, F., Lemaire, F., Moreno Maza, M.: Computing differential characteristic sets by change of ordering. Technical report, Université Lille I (2007); Submitted to the Journal of Symbolic Computation, http://hal.archives-ouvertes.fr/hal-00141095

  38. Mishra, B.: Algebra, Automata, Algorithms & Beyond. Le Matematiche LXIII (1), 21–23 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Katsuhisa Horimoto Georg Regensburger Markus Rosenkranz Hiroshi Yoshida

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boulier, F., Lemaire, F. (2008). Differential Algebra and System Modeling in Cellular Biology. In: Horimoto, K., Regensburger, G., Rosenkranz, M., Yoshida, H. (eds) Algebraic Biology. AB 2008. Lecture Notes in Computer Science, vol 5147. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85101-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85101-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85100-4

  • Online ISBN: 978-3-540-85101-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics