Skip to main content

Local Structure and Behavior of Boolean Bioregulatory Networks

  • Conference paper
Algebraic Biology (AB 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5147))

Included in the following conference series:

Abstract

A well-known discrete approach to modeling biological regulatory networks is the logical framework developed by R. Thomas. The network structure is captured in an interaction graph, which, together with a set of Boolean parameters, gives rise to a state transition graph describing the dynamical behavior. Together with E. H. Snoussi, Thomas later extended the framework by including singular values representing the threshold values of interactions. A systematic approach was taken in [10] to link circuits in the interaction graph with character and number of attractors in the state transition graph by using the information inherent in singular steady states. In this paper, we employ the concept of local interaction graphs to strengthen the results in [10]. Using the local interaction graph of a singular steady state, we are able to construct attractors of the regulatory network from attractors of certain subnetworks. As a comprehensive generalization of the framework introduced in [10], we drop constraints concerning the choice of parameter values to include so-called context sensitive networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernot, G., Comet, J.-P., Richard, A., Guespin, J.: Application of formal methods to biological regulatory networks: extending Thomas’ asynchronous logical approach with temporal logic. J. Theor. Biol. 229, 339–347 (2004)

    Article  MathSciNet  Google Scholar 

  2. Chaouiya, C., Remy, É., Mossé, B., Thieffry, D.: Qualitative analysis of regulatory graphs: a computational tool based on a discrete formal framework. In: First Multidisciplinary International Symposium on Positive Systems: Theory and Applications, POSTA 2003. LNCIS, vol. 294, pp. 119–126. Springer, Heidelberg (2003)

    Google Scholar 

  3. Naldi, A., Thieffry, D., Chaouiya, C.: Decision diagrams for the representation and analysis of logical models of genetic networks. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 233–247. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Remy, É., Mossé, B., Chaouiya, C., Thieffry, D.: A description of dynamical graphs associated to elementary regulatory circuits. Bioinform. 19, 172–178 (2003)

    Google Scholar 

  5. Remy, É., Ruet, P.: On differentiation and homeostatic behaviours of Boolean dynamical systems. In: Priami, C. (ed.) Transactions on Computational Systems Biology VIII. LNCS (LNBI), vol. 4780, pp. 92–101. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Remy, É., Ruet, P., Thieffry, D.: Graphic requirements for multistability and attractive cycles in a boolean dynamical framework (prépublication, 2005)

    Google Scholar 

  7. Richard, A., Comet, J.-P.: Necessary conditions for multistationarity in discrete dynamical systems. Rapport de Recherche (2005)

    Google Scholar 

  8. Richard, A., Comet, J.-P., Bernot, G.: R. Thomas’ modeling of biological regulatory networks: introduction of singular states in the qualitative dynamics. Fundamenta Informaticae 65, 373–392 (2005)

    MATH  MathSciNet  Google Scholar 

  9. Robert, F.: Discrete Iterations: A Metric Study. Springer Series in Computational Mathematics, vol. 6. Springer, Heidelberg (1986)

    MATH  Google Scholar 

  10. Siebert, H., Bockmayr, A.: Relating attractors and singular steady states in the logical analysis of bioregulatory networks. In: Anai, H., Horimoto, K., Kutsia, T. (eds.) AB 2007. LNCS, vol. 4545, pp. 36–50. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Snoussi, E.H., Thomas, R.: Logical identification of all steady states: the concept of feedback loop characteristic states. Bull. Math. Biol. 55, 973–991 (1993)

    MATH  Google Scholar 

  12. Soulé, C.: Graphical requirements for multistationarity. ComPlexUs 1, 123–133 (2003)

    Article  Google Scholar 

  13. Thomas, R., d’Ari, R.: Biological Feedback. CRC Press, Boca Raton (1990)

    MATH  Google Scholar 

  14. Thomas, R., Kaufman, M.: Multistationarity, the basis of cell differentiation and memory. II. Logical analysis of regulatory networks in terms of feedback circuits. Chaos 11, 180–195 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Katsuhisa Horimoto Georg Regensburger Markus Rosenkranz Hiroshi Yoshida

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Siebert, H. (2008). Local Structure and Behavior of Boolean Bioregulatory Networks. In: Horimoto, K., Regensburger, G., Rosenkranz, M., Yoshida, H. (eds) Algebraic Biology. AB 2008. Lecture Notes in Computer Science, vol 5147. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85101-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85101-1_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85100-4

  • Online ISBN: 978-3-540-85101-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics