Skip to main content

The Smallest Multistationary Mass-Preserving Chemical Reaction Network

  • Conference paper
Algebraic Biology (AB 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5147))

Included in the following conference series:

Abstract

Biochemical models that exhibit bistability are of interest to biologists and mathematicians alike. Chemical reaction network theory can provide sufficient conditions for the existence of bistability, and on the other hand can rule out the possibility of multiple steady states. Understanding small networks is important because the existence of multiple steady states in a subnetwork of a biochemical model can sometimes be lifted to establish multistationarity in the larger network. This paper establishes the smallest reversible, mass-preserving network that admits bistability and determines the semi-algebraic set of parameters for which more than one steady state exists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. Springer, Berlin (2006)

    MATH  Google Scholar 

  2. Cherry, J., Adler, F.: How to make a biological switch. J. Theor. Biol. 203(2), 117–133 (2000)

    Article  Google Scholar 

  3. Conradi, C., Flockerzi, D., Raisch, J.: Multistationarity in the activation of a MAPK: parametrizing the relevant region in parameter space. Math. Biosciences 211(1), 105–131 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Conradi, C., Flockerzi, D., Raisch, J., Stelling, J.: Subnetwork analysis reveals dynamic features of complex (bio)chemical networks. P. Natl. Acad. Sci. 104(49), 19175–19180 (2007)

    Article  Google Scholar 

  5. Craciun, G., Dickenstein, A., Shiu, A., Sturmfels, B.: Toric dynamical systems (arXiv:0708.3431)

    Google Scholar 

  6. Craciun, G., Feinberg, M.: Multiple equilibria in complex chemical reaction networks: I. The injectivity property. SIAM J. Appl. Math. 65(5), 1526–1546 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Craciun, G., Feinberg, M.: Multiple equilibria in complex chemical reaction networks: II. The species-reactions graph. SIAM J. Appl. Math. 66(4), 1321–1338 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dentin, R., Hedrick, S., Xie, J., Yates, J., Montminy, M.: Hepatic Glucose Sensing via the CREB Coactivator CRTC2. Science 319(5868), 1402–1405 (2008)

    Article  Google Scholar 

  9. Ellison, P.: The advanced deficiency algorithm and its applications to mechanism discrimination. PhD Thesis, University of Rochester (1998)

    Google Scholar 

  10. Ellison, P., Feinberg, M.: CRNT Toolbox, http://www.che.eng.ohio-state.edu/~feinberg/crnt/

  11. Feinberg, M.: Chemical oscillations, multiple equilibria, and reaction network structure. In: Stewart, W., Rey, W., Conley, C. (eds.) Dynamics of reactive systems, pp. 59–130. Academic Press, New York (1980)

    Google Scholar 

  12. Feinberg, M.: The existence and uniqueness of steady states for a class of chemical reaction networks. Arch. Ration. Mech. Anal. 132, 311–370 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Feinberg, M.: Lectures on chemical reaction networks. Notes of lectures given at the Mathematics Research Center of the University of Wisconsin in 1979 (1979), http://www.che.eng.ohio-state.edu/~feinberg/LecturesOnReactionNetworks

  14. Horn, F.: Dynamics of open reaction systems II. Stability and the complex graph. Proc. Royal Soc. A. 334, 313–330 (1973)

    Article  MathSciNet  Google Scholar 

  15. Horn, F.: Stability and complex balancing in mass-action systems with three complexes. Proc. Royal Soc. A. 334, 331–342 (1973)

    Article  MathSciNet  Google Scholar 

  16. Horn, F., Jackson, R.: General mass action kinetics. Arch. Rat. Mech. Anal. 47, 81–116 (1972)

    Article  MathSciNet  Google Scholar 

  17. Laurent, M., Kellershohn, N.: Multistability: a major means of differentiation and evolution in biological systems. Trends Biochem. Sci. 24, 418–422 (1999)

    Article  Google Scholar 

  18. Lisman, J.: A Mechanism for Memory Storage Insensitive to Molecular Turnover: A Bistable Autophosphorylating Kinase. Proc. Natll. Acad. Sci. 82(9), 3055–3057 (1985)

    Article  Google Scholar 

  19. Segel, L.: Multiple attractors in immunology: theory and experiment. Biophys. Chem. 72(1-2), 223–230 (1998)

    Article  Google Scholar 

  20. Sturmfels, B.: Solving systems of polynomial equations. American Mathematical Society, Providence (2002)

    MATH  Google Scholar 

  21. Wang, D., Xia, B.: Stability analysis of biological systems with real solution classification. In: ISSAC 2005: Proceedings of the 2005 international symposium on Symbolic and algebraic computation, pp. 354–361. ACM, New York (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Katsuhisa Horimoto Georg Regensburger Markus Rosenkranz Hiroshi Yoshida

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shiu, A. (2008). The Smallest Multistationary Mass-Preserving Chemical Reaction Network. In: Horimoto, K., Regensburger, G., Rosenkranz, M., Yoshida, H. (eds) Algebraic Biology. AB 2008. Lecture Notes in Computer Science, vol 5147. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85101-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85101-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85100-4

  • Online ISBN: 978-3-540-85101-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics