Skip to main content

Statistical Security Conditions for Two-Party Secure Function Evaluation

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5155))

Abstract

To simplify proofs in information-theoretic security, the standard security definition of two-party secure function evaluation based on the real/ideal model paradigm is often replaced by an information-theoretic security definition. At EUROCRYPT 2006, we showed that most of these definitions had some weaknesses, and presented new information-theoretic conditions that were equivalent to a simulation-based definition in the real/ideal model. However, there we only considered the perfect case, where the protocol is not allowed to make any error, which has only limited applications.

We generalize these results to the statistical case, where the protocol is allowed to make errors with a small probability. Our results are based on a new measure of information that we call the statistical information, which may be of independent interest.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yao, A.C.: Protocols for secure computations. In: Proceedings of the 23rd Annual IEEE Symposium on Foundations of Computer Science (FOCS 1982), pp. 160–164 (1982)

    Google Scholar 

  2. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Proceedings of the 21st Annual ACM Symposium on Theory of Computing (STOC 1987), pp. 218–229. ACM Press, New York (1987)

    Google Scholar 

  3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Proceedings of the 21st Annual ACM Symposium on Theory of Computing (STOC 1988), pp. 1–10. ACM Press, New York (1988)

    Chapter  Google Scholar 

  4. Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (extended abstract). In: Proceedings of the 21st Annual ACM Symposium on Theory of Computing (STOC 1988), pp. 11–19. ACM Press, New York (1988)

    Chapter  Google Scholar 

  5. Wiesner, S.: Conjugate coding. SIGACT News 15(1), 78–88 (1983)

    Article  Google Scholar 

  6. Rabin, M.O.: How to exchange secrets by oblivious transfer. Technical Report TR-81, Harvard Aiken Computation Laboratory (1981)

    Google Scholar 

  7. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. Commun. ACM 28(6), 637–647 (1985)

    Article  MathSciNet  Google Scholar 

  8. Goldreich, O., Vainish, R.: How to solve any protocol problem - an efficiency improvement. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 73–86. Springer, Heidelberg (1988)

    Google Scholar 

  9. Kilian, J.: Founding cryptography on oblivious transfer. In: Proceedings of the 20th Annual ACM Symposium on Theory of Computing (STOC 1988), pp. 20–31. ACM Press, New York (1988)

    Chapter  Google Scholar 

  10. Crépeau, C.: Verifiable disclosure of secrets and applications. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 181–191. Springer, Heidelberg (1990)

    Google Scholar 

  11. Goldwasser, S., Levin, L.A.: Fair computation of general functions in presence of immoral majority. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 77–93. Springer, Heidelberg (1991)

    Google Scholar 

  12. Crépeau, C., van de Graaf, J., Tapp, A.: Committed oblivious transfer and private multi-party computation. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 110–123. Springer, Heidelberg (1995)

    Google Scholar 

  13. Kilian, J.: More general completeness theorems for secure two-party computation. In: Proceedings of the 32th Annual ACM Symposium on Theory of Computing (STOC 2000), pp. 316–324. ACM Press, New York (2000)

    Chapter  Google Scholar 

  14. Micali, S., Rogaway, P.: Secure computation (abstract). In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 392–404. Springer, Heidelberg (1992)

    Google Scholar 

  15. Beaver, D.: Foundations of secure interactive computing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 377–391. Springer, Heidelberg (1992)

    Google Scholar 

  16. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  17. Canetti, R.: Security and composition of multiparty cryptographic protocols. Journal of Cryptology 13(1), 143–202 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Goldreich, O.: Foundations of Cryptography. Basic Applications, vol. II. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  19. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: Proceedings of the 42th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2001), pp. 136–145 (2001), http://eprint.iacr.org/2000/067

  20. Backes, M., Pfitzmann, B., Waidner, M.: A universally composable cryptographic library (2003), http://eprint.iacr.org/2003/015

  21. Crépeau, C., Savvides, G., Schaffner, C., Wullschleger, J.: Information-theoretic conditions for two-party secure function evaluation. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 538–554. Springer, Heidelberg (2006), http://eprint.iacr.org/2006/183

    Chapter  Google Scholar 

  22. Wullschleger, J.: Oblivious-Transfer Amplification. PhD thesis, ETH Zurich, Switzerland (2007)

    Google Scholar 

  23. Shannon, C.E.: A mathematical theory of communication. Bell System Tech. Journal 27, 379–423 (1948)

    MathSciNet  Google Scholar 

  24. Fehr, S., Schaffner, C.: Composing quantum protocols in a classical environment (2008), http://arxiv.org/abs/0804.1059

  25. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley-Interscience, Chichester (1991)

    MATH  Google Scholar 

  26. Kellogg, R.B., Li, T.Y., Yorke, J.: A constructive proof of the brouwer fixed-point theorem and computational results. SIAM Journal on Numerical Analysis 13(4), 473–483 (1976)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Reihaneh Safavi-Naini

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Crépeau, C., Wullschleger, J. (2008). Statistical Security Conditions for Two-Party Secure Function Evaluation. In: Safavi-Naini, R. (eds) Information Theoretic Security. ICITS 2008. Lecture Notes in Computer Science, vol 5155. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85093-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85093-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85092-2

  • Online ISBN: 978-3-540-85093-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics