Computing the State of Specknets: Further Analysis of an Innate Immune-Inspired Model

  • Despina Davoudani
  • Emma Hart
  • Ben Paechter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5132)


Specknets consist of hundreds of miniature devices, which are each capable of processing data and communicating wirelessly across short distances. Such networks, with their great complexity, pose considerable challenges for engineers due to the unreliability and scarce resources of individual devices. Their limitations make it difficult to apply traditional engineering approaches. In this paper, we describe a model inspired by the dendritic cells of the innate immune system; often overlooked in artificial immune systems, dendritic cells possess a unique ability to scout the body environment and then present an integrated picture of the internal state of the body to the adaptive system. We adopt a model, inspired by this approach, to sense the state of a Specknet and provide experimental results to show that useful information can be gathered from the Specknet in order to determine local states. Experiments are conducted using realistic random topologies in a simulation environment, in a scenario which models sensing temperature changes.


Dendritic Cell Sensor Node Wireless Sensor Network Span Tree Innate Immune System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Arvind, D., Elgaid, K., Krauss, T., Paterson, A., Stewart, R., Thayne, I.: Towards an Integrated Design Approach to Specknets. In: IEEE Int. Conf. Communications 2007, ICC 2007, pp. 3319–3324 (2007)Google Scholar
  3. 3.
    Atakan, B., Akan, Ö.B.: Immune System Based Distributed Node and Rate Selection in Wireless Sensor Networks. In: BIONETICS 2006: Proc. 1st Int. Conf. Bio-Inspired Models of Network, Information and Computing Systems, p. 3. ACM Press, New York (2006)CrossRefGoogle Scholar
  4. 4.
    Bokareva, T., Bulusu, N., Jha, S.: SASHA: Toward a Self-Healing Hybrid Sensor Network Architecture. In: Proc. 2nd IEEE Workshop Embedded Networked Sensors (EmNetS-II) (June 2005)Google Scholar
  5. 5.
    Davoudani, D., Hart, E.: Computing the State of Specknets: An Immune-Inspired Approach. In: Proc. Int. Symposium on Performance Evaluation of Computer and Telecommunication Systems, SPECTS 2008, Edinburgh, UK, June 16–18 (2008)Google Scholar
  6. 6.
    Davoudani, D., Hart, E., Paechter, B.: An Immune-Inspired Approach to Speckled Computing. In: de Castro, L.N., Von Zuben, F.J., Knidel, H. (eds.) ICARIS 2007. LNCS, vol. 4628, pp. 288–299. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Dressler, F.: Benefits of Bio-inspired Technologies for Networked Embedded Systems: An Overview. In: Dagstuhl Seminar 06031 on Organic Computing - Controlled Emergence, Schloss Dagstuhl, Wadern, Germany (January 2006)Google Scholar
  8. 8.
    Greensmith, J., Aickelin, U., Twycross, J.: Articulation and Clarification of the Dendritic Cell Algorithm. In: Bersini, H., Carneiro, J. (eds.) ICARIS 2006. LNCS, vol. 4163, pp. 404–417. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    McNally, R., Arvind, D.K.: A Distributed Leaderless Algorithm for Location Discovery in Specknets. In: Kermarrec, A.-M., Bougé, L., Priol, T. (eds.) Euro-Par 2007. LNCS, vol. 4641. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Sompayrac, L.: How the Immune System Works, 3rd edn. Blackwell Publishing, Malden (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Despina Davoudani
    • 1
  • Emma Hart
    • 1
  • Ben Paechter
    • 1
  1. 1.Napier UniversityScotland, UK

Personalised recommendations