Advertisement

Viral System to Solve Optimization Problems: An Immune-Inspired Computational Intelligence Approach

  • Pablo Cortés
  • José M. García
  • Luis Onieva
  • Jesús Muñuzuri
  • José Guadix
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5132)

Abstract

This paper presents Viral System as a new immune-inspired computational intelligence approach to deal with optimization problems. The effectiveness of the approach is tested on the Steiner problem in networks a well known NP-Hard problem providing great quality solutions in the order of the best known approaches or even improving them.

Keywords

Feasible Solution Steiner Tree Artificial Immune System Solve Optimization Problem Steiner Tree Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Farmer, J.D., Packard, N., Perelson, A.: The immune system, adaptation and machine learning. Physica D 22, 187–204 (1986)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Cutello, V., Nicosia, G., Pavone, M.: An Immune Algorithm with Stochastic Aging and Kullback Entropy for the Chromatic Number Problem. Journal of Combinatorial Optimization 14(1), 9–33 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Cutello, V., Nicosia, G., Pavone, M., Timmis, J.: An Immune Algorithm for Protein Structure Prediction on Lattice Models. IEEE Transaction on Evolutionary Computation 11(1), 101–117 (2007)CrossRefGoogle Scholar
  4. 4.
    Cutello, V., Narzisi, G., Nicosia, G., Pavone, M.: Clonal Selection Algorithms: A Comparative Case Study using Effective Mutation Potentials, optIA versus CLONALG. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 13–28. Springer, Heidelberg (2005)Google Scholar
  5. 5.
    Van Dyke Parunak, H.: Go to the ant: Engineering principles from natural multi-agent systems. Annals of Operations Research 75, 69–101 (1997)zbMATHCrossRefGoogle Scholar
  6. 6.
    Koch, T., Martin, A.: Solving Steiner tree problems in graphs to optimality. Networks 32(3), 207–232 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Gendreau, M., Larochelle, J.-F., Sansò, B.: A tabu search heuristic for the Steiner tree problem. Networks 34(2), 162–172 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Esbensen, H.: Computing near-optimal solutions to the Steiner problem in a graph using genetic algorithm. Networks 26, 173–185 (1995)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Pablo Cortés
    • 1
  • José M. García
    • 1
  • Luis Onieva
    • 1
  • Jesús Muñuzuri
    • 1
  • José Guadix
    • 1
  1. 1.Ingeniería de Organización, Escuela Técnica Superior de IngenierosSeville UniversitySevilleSpain

Personalised recommendations