Advertisement

A Multi-Objective Multipopulation Approach for Biclustering

  • Guilherme Palermo Coelho
  • Fabrício Olivetti de França
  • Fernando J. Von Zuben
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5132)

Abstract

Biclustering is a technique developed to allow simultaneous clustering of rows and columns of a dataset. This might be useful to extract more accurate information from sparse datasets and to avoid some of the drawbacks presented by standard clustering techniques, such as their impossibility of finding correlating data under a subset of features. Given that biclustering requires the optimization of two conflicting objectives (residue and volume) and that multiple independent solutions are desirable as the outcome, a multi-objective artificial immune system capable of performing a multipopulation search, named MOM-aiNet, will be proposed in this paper. To illustrate the capabilities of this novel algorithm, MOM-aiNet was applied to the extraction of biclusters from two datasets, one taken from a well-known gene expression problem and the other from a collaborative filtering application. A comparative analysis has also been accomplished, with the obtained results being confronted with the ones produced by two popular biclustering algorithms from the literature (FLOC and CC) and also by another immune-inspired approach for biclustering (BIC-aiNet).

Keywords

biclustering multi-objective optimization multipopulation search artificial immune systems gene expression collaborative filtering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de França, F.O., Bezerra, G., Von Zuben, F.J.: New Perspectives for the Biclustering Problem. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Vancouver, Canada, pp. 753–760 (2006)Google Scholar
  2. 2.
    Cheng, Y., Church, G.M.: Biclustering of expression data. In: Proc. of the 8th Int. Conf. on Intelligent Systems for Molecular Biology, pp. 93–103 (2000)Google Scholar
  3. 3.
    de Castro, L.N., Von Zuben, F.J.: aiNet: An Artificial Immune Network for Data Analysis. In: Abbass, H.A., Sarker, R.A., Newton, C.S. (eds.) Data Mining: A Heuristic Approach, pp. 231–259. Idea Group Publishing (2001)Google Scholar
  4. 4.
    Cho, R., Campbell, M., Winzeler, E., Steinmetz, L., Conway, A., Wodicka, L., Wolfsberg, T., Gabrielian, A., Landsman, D., Lockhart, D., Davis, R.: A genome-wide transcriptional analysis of the mitotic cell cycle. Molecular Cell 2, 65–73 (1998)CrossRefGoogle Scholar
  5. 5.
    GroupLens: MovieLens dataset. GroupLens, Department of Computer Science and Engineering, University of Minnesota, http://www.grouplens.org/node/73
  6. 6.
    Jiong, Y., Haixun, W., Wei, W., Yu, P.S.: Enhanced biclustering on expression data. In: Proc. of the Third IEEE Symposium on Bioinformatics and Bioengineering, pp. 321–327 (2003)Google Scholar
  7. 7.
    de Castro, P.A.D., de França, F.O., Ferreira, H.M., Von Zuben, F.J.: Applying Biclustering to Text Mining: An Immune-Inspired Approach. In: de Castro, L.N., Von Zuben, F.J., Knidel, H. (eds.) ICARIS 2007. LNCS, vol. 4628, pp. 83–94. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    de Castro, P.A.D., de França, F.O., Ferreira, H.M., Von Zuben, F.J.: Applying Biclustering to Perform Collaborative Filtering. In: Proc. of the 7th International Conference on Intelligent Systems Design and Applications, Rio de Janeiro, Brazil, pp. 421–426 (2007)Google Scholar
  9. 9.
    de Castro, P.A.D., de França, F.O., Ferreira, H.M., Von Zuben, F.J.: Evaluating the Performance of a Biclustering Algorithm Applied to Collaborative Filtering: A Comparative Analysis. In: Proc. of the 7th International Conference on Hybrid Intelligent Systems, Kaiserslautern, Germany, pp. 65–70 (2007)Google Scholar
  10. 10.
    Agrawal, R., Gehrke, J., Gunopulus, D., Raghavan, P.: Automatic subspace clustering of high dimensional data for data mining applications. In: Proc. of the ACM/SIGMOD Int. Conference on Management of Data, pp. 94–105 (1998)Google Scholar
  11. 11.
    Dhillon, I.S.: Co-clustering documents and words using bipartite spectral graph partitioning. In: Proc. of the 7th Int. Con. on Knowledge Discovery and Data Mining, pp. 269–274 (2001)Google Scholar
  12. 12.
    Feldman, R., Sanger, J.: The Text Mining Handbook. Cambridge University Press, Cambridge (2006)Google Scholar
  13. 13.
    Hartigan, J.A.: Direct clustering of a data matrix. Journal of the American Statistical Association (JASA) 67(337), 123–129 (1972)CrossRefGoogle Scholar
  14. 14.
    Symeonidis, P., Nanopoulos, A., Papadopoulos, A., Manolopoulos, Y.: Nearest-biclusters collaborative filtering with constant values. In: Advances in Web Mining and Web Usage Analysis, Philadelphia, USA. LNCS, vol. 4811, pp. 36–55. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Tang, C., Zhang, L., Zhang, I., Ramanathan, M.: Interrelated two-way clustering: an unsupervised approach for gene expression data analysis. In: Proc. of the 2nd IEEE Int. Symposium on Bioinformatics and Bioengineering, pp. 41–48 (2001)Google Scholar
  16. 16.
    Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: A survey. IEEE Transactions on Computational Biology and Bioinformatics 1(1), 24–45 (2004)CrossRefGoogle Scholar
  17. 17.
    Burnet, F.M.: Clonal selection and after. In: Bell, G.I., Perelson, A.S., Pimgley Jr., G.H. (eds.) Theoretical Immunology, pp. 63–85. Marcel Dekker Inc., New York (1978)Google Scholar
  18. 18.
    Jerne, N.K.: Towards a network theory of the immune system. Ann. Immunol., Inst. Pasteur 125C, 373–389 (1974)Google Scholar
  19. 19.
    de Castro, L.N., Von Zuben, F.J.: Learning and Optimization Using the Clonal Selection Principle. IEEE Transactions on Evolutionary Computation 6(3), 239–251 (2002)CrossRefGoogle Scholar
  20. 20.
    Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, Chichester (2001)zbMATHGoogle Scholar
  21. 21.
    Coelho, G.P., Von Zuben, F.J.: omni-aiNet: An immune-inspired approach for omni optimization. In: Bersini, H., Carneiro, J. (eds.) ICARIS 2006. LNCS, vol. 4163, pp. 294–308. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Guilherme Palermo Coelho
    • 1
  • Fabrício Olivetti de França
    • 1
  • Fernando J. Von Zuben
    • 1
  1. 1.Laboratory of Bioinformatics and Bioinspired Computing (LBiC) Department of Computer Engineering and Industrial Automation (DCA) School of Electrical and Computer Engineering (FEEC)University of Campinas (Unicamp)CampinasBrazil

Personalised recommendations