An Advanced Clonal Selection Algorithm with Ad-Hoc Network-Based Hypermutation Operators for Synthesis of Topology and Sizing of Analog Electrical Circuits

  • Angelo Ciccazzo
  • Piero Conca
  • Giuseppe Nicosia
  • Giovanni Stracquadanio
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5132)


In electronics, there are two major classes of circuits, analog and digital electrical circuits. While digital circuits use discrete voltage levels, analog circuits use a continuous range of voltage. The synthesis of analog circuits is known to be a complex optimization task, due to the continuous behaviour of the output and the lack of automatic design tools; actually, the design process is almost entirely demanded to the engineers. In this research work, we introduce a new clonal selection algorithm, the elitist Immune Programming, (eIP) which uses a new class of hypermutation operators and a network-based coding. The eIP algorithm is designed for the synthesis of topology and sizing of analog electrical circuits; in particular, it has been used for the design of passive filters. To assess the effectiveness of the designed algorithm, the obtained results have been compared with the passive filter discovered by Koza and co-authors using the Genetic Programming (GP) algorithm. The circuits obtained by eIP algorithm are better than the one found by GP in terms of frequency response and number of components required to build it.


Transition Band Analog Circuit Stop Band Immune Algorithm Clonal Selection Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abbas, A., Lichtman, A., Pober, J., et al.: Cellular and molecular immunology. WB Saunders, Philadelphia (2000)Google Scholar
  2. 2.
    Cutello, V., Nicosia, G., Pavone, M.: Real coded clonal selection algorithm for unconstrained global optimization using a hybrid inversely proportional hypermutation operator. In: Proceedings of the 2006 ACM symposium on Applied computing, pp. 950–954 (2006)Google Scholar
  3. 3.
    Cutello, V., Nicosia, G., Pavone, M., Timmis, J.: An Immune Algorithm for Protein Structure Prediction on Lattice Models. IEEE Transactions on Evolutionary Computation 11(1), 101–117 (2007)CrossRefGoogle Scholar
  4. 4.
    Freitas, A., Timmis, J.: Revisiting the Foundations of Artificial Immune Systems: A Problem-Oriented Perspective. In: Timmis, J., Bentley, P.J., Hart, E. (eds.) ICARIS 2003. LNCS, vol. 2787. Springer, Heidelberg (2003)Google Scholar
  5. 5.
    Cutello, V., Nicosia, G., Pavone, M.: A hybrid immune algorithm with information gain for the graph coloring problem. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 171–182. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Cutello, V., Morelli, G., Nicosia, G., Pavone, M.: Immune algorithms with aging operators for the string folding problem and the protein folding problem. In: Raidl, G.R., Gottlieb, J. (eds.) EvoCOP 2005. LNCS, vol. 3448, pp. 80–90. Springer, Heidelberg (2005)Google Scholar
  7. 7.
    Streeter, M., Keane, M., Koza, J.: Iterative Refinement Of Computational Circuits Using Genetic Programming. In: Proceedings of the Genetic and Evolutionary Computation Conference table of contents, pp. 877–884 (2002)Google Scholar
  8. 8.
    Koza, J., Bennett III, F., Andre, D., Keane, M., Dunlap, F.: Automated synthesis of analog electrical circuits by means of genetic programming. IEEE Transactions on Evolutionary Computation 1(2), 109–128 (1997)CrossRefGoogle Scholar
  9. 9.
    Kashtan, N., Alon, U.: Spontaneous evolution of modularity and network motifs. Proceedings of the National Academy of Sciences 102(39), 13773–13778 (2005)CrossRefGoogle Scholar
  10. 10.
    Musilek, P., Lau, A., Reformat, M., Wyard-Scott, L.: Immune programming. Information Sciences 176(8), 972–1002 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Koza, J., Bennett III, F., Andre, D., Keane, M.: Synthesis of topology and sizing of analog electrical circuits by means of genetic programming. Computer Methods in Applied Mechanics and Engineering 186(2-4), 459–482 (2000)zbMATHCrossRefGoogle Scholar
  12. 12.
    Koza, J., Jones, L., Keane, M., Streeter, M.: Towards industrial strength automated design of analog electrical circuits by means of genetic programming. Genetic Programming Theory and Practice II (2004)Google Scholar
  13. 13.
    Grimbleby, J.: Automatic analogue circuit synthesis using genetic algorithms. Circuits, Devices and Systems. IEE Proceedings [see also IEE Proceedings G-Circuits, Devices and Systems] 147(6), 319–323 (2000)CrossRefGoogle Scholar
  14. 14.
    Alpaydin, G., Balkir, S., Dundar, G.: An evolutionary approach to automatic synthesis of high-performance analog integrated circuits. IEEE Transactions on Evolutionary Computation 7(3), 240–252 (2003)CrossRefGoogle Scholar
  15. 15.
    Dastidar, T., Chakrabarti, P., Ray, P.: A Synthesis System for Analog Circuits Based on Evolutionary Search and Topological Reuse. IEEE Transactions on Evolutionary Computation 9(2), 211–224 (2005)CrossRefGoogle Scholar
  16. 16.
    Koza, J.: Genetic Programming III: Darwinian Invention and Problem Solving. Morgan Kaufmann, San Francisco (1999)zbMATHGoogle Scholar
  17. 17.
    Subramanian, A., Sayed, A.: Multiobjective filter design for uncertain stochastic time-delay systems. IEEE Transactions on Automatic Control 49(1), 149–154 (2004)CrossRefMathSciNetGoogle Scholar
  18. 18.
    El-Habrouk, M., Darwish, M., Mehta, P.: Active power filters: a review. IEE Proceedings Electric Power Applications 147(5), 403–413 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Angelo Ciccazzo
    • 1
  • Piero Conca
    • 2
  • Giuseppe Nicosia
    • 2
  • Giovanni Stracquadanio
    • 2
  1. 1.ST MicroelectronicsCataniaItaly
  2. 2.Department of Mathematics and Computer ScienceUniversity of CataniaCataniaItaly

Personalised recommendations