Skip to main content

MOBAIS: A Bayesian Artificial Immune System for Multi-Objective Optimization

  • Conference paper
Artificial Immune Systems (ICARIS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5132))

Included in the following conference series:

Abstract

Significant progress has been made in theory and design of artificial immune systems (AISs) for solving multi-objective problems accurately. However, an aspect not yet widely addressed by the research reported in the literature is the lack of ability of the AIS to deal effectively with building blocks (high-quality partial solutions coded in the antibody). The available AISs present mechanisms for evolving the population that do not take into account the relationship among the variables of the problem, causing the disruption of these high-quality partial solutions. Recently, we proposed a novel immune-inspired approach for single-objective optimization as an attempt to avoid this drawback. Our proposal replaces the traditional mutation and cloning operators with a probabilistic model, more specifically a Bayesian network representing the joint distribution of promising solutions and, subsequently, uses this model for sampling new solutions. Now, in this paper we extend our methodology for solving multi-objective optimization problems. The proposal, called Multi-Objective Bayesian Artificial Immune System (MOBAIS), was evaluated in the well-known multi-objective Knapsack problem and its performance compares favorably with that produced by contenders such as NSGA-II, MISA, and mBOA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ada, G.L., Nossal, G.J.V.: The Clonal Selection Theory. Scientific American 257(2), 50–57 (1987)

    Article  Google Scholar 

  2. Jerne, N.K.: Towards a Network Theory of the Immune System. Ann. Immunol (Inst. Pasteur) 125C, 373–389 (1974)

    Google Scholar 

  3. Yoo, J., Hajela, P.: Immune network simulations in multicriterion design. Structural Optimization 18, 85–94 (1999)

    Google Scholar 

  4. Coello Coello, C., Cortés, N.C.: An Approach to Solve Multiobjective Optimization Problems Based on an Artificial Immune System. In: First International Conference on Artificial Immune System, pp. 212–221 (2002)

    Google Scholar 

  5. Coello Coello, C., Cortés, N.C.: Solving Multiobjective Optimization Problems Using an Artificial Immune System. Genetic Programming and Evolvable Machines 6(2), 163–190 (2005)

    Article  Google Scholar 

  6. Luh, G.-C., Chueh, C.-H., Liu, W.-M.: MOIA: Multi-objective Immune Algorithm. Engineering Optimization 35(2), 143–164 (2003)

    Article  MathSciNet  Google Scholar 

  7. Freschi, F., Repetto, M.: VIS: An artificial immune network for multi-objective optimization. Engineering Optimization 38, 975–996 (2006)

    Article  Google Scholar 

  8. Coelho, G.P., Von Zuben, F.J.: Omni-aiNet: An Immune-Inspired Approach for Omni Optimization. In: Bersini, H., Carneiro, J. (eds.) ICARIS 2006. LNCS, vol. 4163, pp. 294–308. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Chen, J., Mahfouf, M.: A Population Adaptive Based Immune Algorithm for Solving Multi-objective Optimization Problems. In: Bersini, H., Carneiro, J. (eds.) ICARIS 2006. LNCS, vol. 4163, pp. 280–293. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Castro, P.A.D., Von Zuben, F.J.: BAIS: A Bayesian Artificial Immune System for the Effective Handling of Building Blocks. Information Sciences - Special Issue on Artificial Immune System (accepted, 2008)

    Google Scholar 

  11. Mühlenbein, H., Paass, G.: From Recombination of Genes to the Estimation of Distributions I. Binary Parameters. In: 4th Int. Conf. on Parallel Problem Solving from Nature, pp. 178–187 (1996)

    Google Scholar 

  12. Baluja, S.: Population-Based Incremental Learning: A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning, Technical Report, Carnegie Mellon University, Pittsburgh, PA, USA (1994)

    Google Scholar 

  13. Pelikan, M., Goldberg, D., Lobo, F.: A survey of optimization by building and using probabilistic models, Technical Report, University of Illinois, ILLIGAL Report n 99018 (1999)

    Google Scholar 

  14. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  15. Castro, P.A.D., Von Zuben, F.J.: Bayesian Learning of Neural Networks by Means of Artificial Immune Systems. In: 5th Int. Joint Conf. on Neural Networks, pp. 9885–9892 (2006)

    Google Scholar 

  16. Cooper, G., Herskovits, E.: A bayesian method for the induction of probabilistic networks from data. Machine Learning 9, 309–347 (1992)

    MATH  Google Scholar 

  17. Henrion, M.: Propagating uncertainty in Bayesian networks by probabilistic logic sampling. Uncertainty in Artificial Intelligence 2, 149–163 (1998)

    Google Scholar 

  18. Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)

    Article  Google Scholar 

  19. Van Veldhuizen, D.A.: Multiobjective Evolutionary Algorithms: Classifications, Analysis, and New Innovations, PhD Thesis, Graduate School of Engineering of the Air Force Inst. of Tech., Wright-Patterson AFB (1999)

    Google Scholar 

  20. Khan, N., Goldberg, D.E., Pelikan, M.: Multi-Objective Bayesian Optimization Algorithm, Illigal Report 2002009 (2002)

    Google Scholar 

  21. Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation 8(2), 173–195 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Peter J. Bentley Doheon Lee Sungwon Jung

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Castro, P.A.D., Von Zuben, F.J. (2008). MOBAIS: A Bayesian Artificial Immune System for Multi-Objective Optimization. In: Bentley, P.J., Lee, D., Jung, S. (eds) Artificial Immune Systems. ICARIS 2008. Lecture Notes in Computer Science, vol 5132. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85072-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85072-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85071-7

  • Online ISBN: 978-3-540-85072-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics