On the Relevance of Cellular Signaling Pathways for Immune-Inspired Algorithms

  • T. S. Guzella
  • T. A. Mota-Santos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5132)


In this conceptual paper, we discuss the relevance of cellular signaling pathways for immune-inspired algorithms. With complex dynamics, the mapping of environment stimuli to cellular responses is highlighted as a decision making capability. When considering applications which could benefit from these dynamics, the possibility of incorporating these pathways can be an interesting way to combine more biologically-plausible algorithms and improved performance. The structure of the NF-κB (Nuclear Factor κB) and MAP (Mitogen-activated protein) kinases pathways, and the pathways involved in signaling by Toll-like receptors, are presented. As an example, we then consider how these pathways could be incorporated in the Dendritic Cell Algorithm.


Artificial Immune Systems Signaling pathways NF-κMAP kinases Toll-like receptor signaling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    de Castro, L.N., Timmis, J.: Artificial Immune Systems: A New Computational Intelligence Approach, 1st edn. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  2. 2.
    Kholodenko, B.N.: Cell-signalling dynamics in time and space. Nat. Rev. Mol. Cell. Biol. 7, 165–176 (2006)CrossRefGoogle Scholar
  3. 3.
    Voutsas, K., Adamy, J.: A biologically inspired spiking neural network for sound source lateralization. IEEE Trans. Neural Networks 18(6), 1785–1799 (2007)CrossRefGoogle Scholar
  4. 4.
    Wang, X., Hou, Z.G., Zou, A., Tana, M., Cheng, L.: A behavior controller based on spiking neural networks for mobile robots. Neurocomputing 71, 655–666 (2008)CrossRefGoogle Scholar
  5. 5.
    Stepney, S., Smith, R.E., Timmis, J., Tyrrell, A.M., Neal, M.J., Hone, A.N.W.: Conceptual frameworks for artificial immune systems. Int. J. of Unconv. Comp. 1(3), 315–338 (2005)Google Scholar
  6. 6.
    Freitas, A.A., Timmis, J.: Revisiting the foundations of artificial immune systems for data mining. IEEE Trans. Evol. Comput. 11(4), 521–540 (2007)CrossRefGoogle Scholar
  7. 7.
    Timmis, J., Andrews, P., Owens, N., Clark, E.: An interdisciplinary perspective on artificial immune systems. Evolut. Intel. 1(1), 5–26 (2008)CrossRefGoogle Scholar
  8. 8.
    Greensmith, J.: The Dendritic Cell Algorithm. PhD thesis, School of Computer Science, University of Nottingham (2007)Google Scholar
  9. 9.
    Greensmith, J., Aickelin, U., Tedesco, G.: Information fusion for anomaly detection with the dendritic cell algorithm. Inform Fusion (in press, 2008)Google Scholar
  10. 10.
    Hlavacek, W.S., Faeder, J.R., Blinov, M.L., Perelson, A.S., Goldstein, B.: The complexity of complexes in signal transduction. Biotechnol. and Bioeng. 84(7), 783–794 (2003)CrossRefGoogle Scholar
  11. 11.
    Hartwell, L.H., Hopfield, J.J., Leibler, S., Murray, A.W.: From molecular to modular cell biology. Nature 402(6761) (suppl. S), C47–C52 (1999)CrossRefGoogle Scholar
  12. 12.
    Janes, K.A., Albeck, J.G., Gaudet, S., Sorger, P.K., Lauffenburger, D.A., Yaffe, M.B.: A systems model of signaling identifies a molecular basis set for cytokine-induced apoptosis. Science 310(5754), 1646–1653 (2005)CrossRefGoogle Scholar
  13. 13.
    Helikar, T., Konvalina, J., Heidel, J., Rogers, J.A.: Emergent decision-making in biological signal transduction networks. PNAS 105(6), 1913–1918 (2008)CrossRefGoogle Scholar
  14. 14.
    Hlavacek, W.S., Faeder, J.R., Blinov, M.L., Posner, R.G., Hucka, M., Fontana, W.: Rules for modeling signal-transduction systems. Sci. STKE 344, re6 (2006)Google Scholar
  15. 15.
    Ciocchetta, F., Hillston, J.: Bio-PEPA: An extension of the process algebra PEPA for biochemical networks. Electron Notes in Theor. Comput. Sci. 194(3), 103–117 (2008)CrossRefGoogle Scholar
  16. 16.
    Spicher, A., Michel, O., Cieslak, M., Giavitto, J.L., Prusinkiewicz, P.: Stochastic P systems and the simulation of biochemical processes with dynamic compartments. BioSystems 91(3), 458–472 (2008)CrossRefGoogle Scholar
  17. 17.
    Janeway, C.A., Travers, P., Walport, M., Shlonmchik, M.: Immunobiology: the immune system in health and disease, 5th edn. Garland Publishing, Inc., New York (2002)Google Scholar
  18. 18.
    Krishna, S., Jensen, M.H., Sneppen, K.: Minimal model of spiky oscillations in NF-κB signaling. PNAS 103(29), 10840–10845 (2006)CrossRefGoogle Scholar
  19. 19.
    Kholodenko, B.N.: Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. Eur. J. Biochem. 267(6), 1583–1588 (2000)CrossRefGoogle Scholar
  20. 20.
    Chang, L., Karin, M.: Mammalian MAP kinase signalling cascades. Nature 410, 37–40 (2001)CrossRefGoogle Scholar
  21. 21.
    Ashwell, J.D.: The many paths to p38 mitogen-activated protein kinase activation in the immune system. Nat. Rev. Immunol. 6, 532–540 (2006)CrossRefGoogle Scholar
  22. 22.
    Trinchieri, G., Sher, A.: Cooperation of toll-like receptor signals in innate immune defence. Nat. Rev. Immunol. 7, 179–190 (2007)CrossRefGoogle Scholar
  23. 23.
    Iwasaki, A., Medzhitov, R.: Toll-like receptor control of the adaptive immune responses. Nat. Immunol. 5(10), 987–995 (2004)CrossRefGoogle Scholar
  24. 24.
    Akira, S., Takeda, K.: Toll-like receptor signalling. Nat. Rev. Immunol. 4, 499–511 (2004)CrossRefGoogle Scholar
  25. 25.
    Whitmore, M.M., Iparraguirre, A., Kubelka, L., Weninger, W., Hai, T., Williams, B.R.G.: Negative regulation of TLR-signaling pathways by activating transcription factor-3. J. Immunol. 179, 3622–3630 (2007)Google Scholar
  26. 26.
    Twycross, J.P.: Integrated Innate and Adaptive Artificial Immune Systems Applied to Process Anomaly Detection. PhD thesis, School of Computer Science, University of Nottingham (2007)Google Scholar
  27. 27.
    Twycross, J., Aickelin, U.: Biological inspiration for artificial immune systems. In: de Castro, L.N., Von Zuben, F.J., Knidel, H. (eds.) ICARIS 2007. LNCS, vol. 4628, pp. 300–311. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  28. 28.
    Owens, N.D., Timmis, J., Greensted, A.J., Tyrell, A.M.: On immune inspired homeostasis for electronic systems. In: de Castro, L.N., Von Zuben, F.J., Knidel, H. (eds.) ICARIS 2007. LNCS, vol. 4628, pp. 216–227. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  29. 29.
    Guzella, T.S., Mota-Santos, T.A., Caminhas, W.M.: Towards a novel immune inspired approach to temporal anomaly detection. In: de Castro, L.N., Von Zuben, F.J., Knidel, H. (eds.) ICARIS 2007. LNCS, vol. 4628, pp. 119–130. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  30. 30.
    Guzella, T.S., Mota-Santos, T.A., Caminhas, W.M.: Regulatory T cells: Inspiration for artificial immune systems. In: de Castro, L.N., Von Zuben, F.J., Knidel, H. (eds.) ICARIS 2007. LNCS, vol. 4628, pp. 312–323. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  31. 31.
    Hart, E., Timmis, J.: Application areas of AIS: The past, the present and the future. Appl. Soft. Comput. 8, 191–201 (2008)CrossRefGoogle Scholar
  32. 32.
    Fall, C., Marland, E., Wagner, J., Tyson, J. (eds.): Computational Cell Biology, 1st edn. Springer, Heidelberg (2002)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • T. S. Guzella
    • 1
    • 2
  • T. A. Mota-Santos
    • 2
  1. 1.Dept. of Electrical EngineeringFederal University of Minas GeraisBelo Horizonte (MG)Brazil
  2. 2.Dept. of Biochemistry and ImmunologyFederal University of Minas GeraisBelo Horizonte (MG)Brazil

Personalised recommendations