Advertisement

Adaptable Lymphocytes for Artificial Immune Systems

  • Paul S. Andrews
  • Jon Timmis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5132)

Abstract

The adaptable lymphocyte hypothesis is identified as a possible source of inspiration for artificial immune systems. Based on a number of qualitative investigations we identify some properties of a theoretical system (the tunable activation threshold model and excitability) that could be applicable in an engineering domain. An example is shown of how we could exploit these properties.

Keywords

Activation Threshold Excitation Level Qualitative Investigation Antigenic Stimulus Engineering Context 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stepney, S., Smith, R., Timmis, J., Tyrrell, A., Neal, M., Hone, A.: Conceptual frameworks for artificial immune systems. International Journal of Unconventional Computing 1(3) (2005)Google Scholar
  2. 2.
    Grossman, Z., Paul, W.E.: Adaptive cellular interactions in the immune system: The tunable activation threshold and the significance of subthreshold responses. Proceedings of the National Academy of Sciences (PNAS) 89, 10365–10369 (1992)CrossRefGoogle Scholar
  3. 3.
    Grossman, Z.: Cellular tolerance as a dynamic state of the adaptable lymphocyte. Immunological Reviews 133, 45–73 (1993)CrossRefGoogle Scholar
  4. 4.
    Andrews, P.S., Timmis, J.: Inspiration for the next generation of artificial immune systems. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 126–138. Springer, Heidelberg (2005)Google Scholar
  5. 5.
    Cohen, I.R.: Tending Adam’s Garden: Evolving the Cognitive Immune Self. Elsevier Academic Press, Amsterdam (2000)Google Scholar
  6. 6.
    Andrews, P.S., Timmis, J.: A computational model of degeneracy in a lymph node. In: Bersini, H., Carneiro, J. (eds.) ICARIS 2006. LNCS, vol. 4163, pp. 164–177. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Guzella, T.S., Mota-Santos, T.A., Caminhas, W.M.: Towards a novel immune inspired approach to temporal anomaly detection. In: de Castro, L.N., Von Zuben, F.J., Knidel, H. (eds.) ICARIS 2007. LNCS, vol. 4628, pp. 119–130. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Carneiro, J., Paixão, T., Milutinovic, D., Sousa, J., Leon, K., Gardner, R., Faro, J.: Immunological self-tolerance: Lessons from mathematical modeling. Journal of Computational and Applied Mathematics 184, 77–100 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    van den Berg, H.A., Rand, D.A.: Dynamics of T cell activation threshold tuning. Journal of Theoretical Biology 228, 397–416 (2004)CrossRefGoogle Scholar
  10. 10.
    Scherer, A., Noest, A., de Boer, R.J.: Activation-threshold tuning in an affinity model for the T-cell repertoire. Proceedings of The Royal Society B 271(1539), 609–616 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Paul S. Andrews
    • 1
  • Jon Timmis
    • 1
    • 2
  1. 1.Department of Computer ScienceUniversity of YorkUK
  2. 2.Department of ElectronicsUniversity of YorkUK

Personalised recommendations