Advertisement

Immune Responses: A Stochastic Model

  • Anastasio Salazar-Bañuelos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5132)

Abstract

Immune phenomena are explained from the reductionist view of the immune system as a collection of cells, molecules, and their interactions. Although this approach has produced abundant valuable information, it has added increased complexity. Artificial Immune Systems (AIS) have relied on this theoretical framework to emulate the desired characteristics of immunity. However, the complexity of the theoretical base has lead to an impasse in AIS research, suggesting that a new theoretical framework is needed. A theoretical model is presented here that explains immune responses as a ”swarm function”. The model proposes a system based on two stochastic networks: a central recursive network, wherein the proportion of agents is determined and maintained, and a peripheral network, wherein the random interactions of these agents determine if an inflammatory response will emerge from the system.

Keywords

Lymphatic System Clonal Selection Transplant Rejection Complex Adaptive System Immune Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hart, E., Timmis, J.: Application areas of AIS: The past, the present and the future. Appl. Soft Comput. 8, 191–201 (2008)CrossRefGoogle Scholar
  2. 2.
    Timmis, J.: Artificial immune systems—today and tomorrow. Natural Computing: an international journal 6, 1–18 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Twycross, J., Aickelin, U.: Biological inspiration for artificial immune systems. In: Sixth International Conference on Artificial Immune Systems, Santos, SP, Brazil (2007)Google Scholar
  4. 4.
    Coutinho, A.: The Le Douarin phenomenon: a shift in the paradigm of developmental selftolerance. Int. J. Dev. Biol. 49, 131–136 (2005)CrossRefGoogle Scholar
  5. 5.
    Coutinho, A.: Immunology at the crossroads. As decades of research have resulted in few clinical applications, it is time to think about new research strategies to understand the workings of the immune system. EMBO Rep. 3, 1008–1011 (2002)CrossRefGoogle Scholar
  6. 6.
    Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M., Toda, M.: Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995)Google Scholar
  7. 7.
    Sakaguchi, S.: Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat. Immunol. 6, 345–352 (2005)CrossRefGoogle Scholar
  8. 8.
    Schwartz, R.H.: Natural regulatory T cells and self-tolerance. Nat. Immunol. 6, 327–330 (2005)CrossRefGoogle Scholar
  9. 9.
    Lacroix-Desmazes, S., Kaveri, S.V., Mouthon, L., Ayouba, A., Malanchere, E., Coutinho, A., Kazatchkine, M.D.: Self-reactive antibodies (natural autoantibodies) in healthy individuals. J. Immunol. Methods 216, 117–137 (1998)CrossRefGoogle Scholar
  10. 10.
    Tauber, A.I.: The Immune Self: Theory or Metaphor? Cambridge University Press, Cambridge (1994)Google Scholar
  11. 11.
    Jerne, N.K.: Towards a network theory of the immune system. Ann. Immunol (Paris) 125C, 373 (1974)Google Scholar
  12. 12.
    Vaz, N.M., Varela, F.J.: Self and non-sense: an organism-centered approach to immunology. Med. Hypotheses 4, 231–267 (1978)CrossRefGoogle Scholar
  13. 13.
    Stewart, J., Varela, F.J., Coutinho, A.: The relationship between connectivity and tolerance as revealed by computer simulation of the immune network: some lessons for an understanding of autoimmunity. J. Autoimmun. 2(suppl.), 15–23 (1989)CrossRefGoogle Scholar
  14. 14.
    Stewart, J., Varela, F.J.: Morphogenesis in shape-space. Elementary meta-dynamics in a model of the immune network. J. Theor. Biol. 153, 477–498 (1991)CrossRefGoogle Scholar
  15. 15.
    Varela, F.J., Coutinho, A.: Second generation immune networks. Immunol. Today 12, 159–166 (1991)Google Scholar
  16. 16.
    Stewart, J., Coutinho, A.: The affirmation of self: a new perspective on the immune system. Artif. Life 10, 261–276 (2004)CrossRefGoogle Scholar
  17. 17.
    Carneiro, J.: Towards a comprehensive view of the immune system Ph.D. Thesis, University of Porto (1997)Google Scholar
  18. 18.
    Orosz, C.G., Forrest, S., Hoffmeyr, S., Cohen, I.R., Segel, L.A.: How complexity helps to shape alloimmunity. Graft 4, 365–382 (2001)CrossRefGoogle Scholar
  19. 19.
    Tonegawa, S.: Somatic generation of antibody diversity. Nature 302, 575–581 (1983)CrossRefGoogle Scholar
  20. 20.
    Burnet, F.M.: A modification of Jerne’s theory of antibody production using the concept of clonal section. Aust. J. Sci. 20, 67–69 (1957)Google Scholar
  21. 21.
    Klein, J., Sato, A.: The HLA system. First of two parts. N. Engl. J. Med. 343, 702–709 (2000)CrossRefGoogle Scholar
  22. 22.
    Klein, J., Sato, A.: The HLA system. Second of two parts. N. Engl. J. Med. 343, 782–786 (2000)CrossRefGoogle Scholar
  23. 23.
    McKenna, R.M., Takemoto, S.K., Terasaki, P.I.: Anti-HLA antibodies after solid organ transplantation. Transplantation 69, 319–326 (2000)CrossRefGoogle Scholar
  24. 24.
    Taylor, A.L., Watson, C.J., Bradley, J.A.: Immunosuppressive agents in solid organ transplantation: Mechanisms of action and therapeutic efficacy. Crit. Rev. Oncol. Hematol. 56, 23–46 (2005)CrossRefGoogle Scholar
  25. 25.
    Fliedner, T.M., Graessle, D., Paulsen, C., Reimers, K.: Structure and function of bone marrow hemopoiesis: mechanisms of response to ionizing radiation exposure. Cancer Biother. Radiopharm. 17, 405–426 (2002)CrossRefGoogle Scholar
  26. 26.
    Sakaguchi, N., Miyai, K., Sakaguchi, S.: Ionizing radiation and autoimmunity. Induction of autoimmune disease in mice by high dose fractionated total lymphoid irradiation and its prevention by inoculating normal T cells. J. Immunol. 152, 2586–2595 (1994)Google Scholar
  27. 27.
    von Boehmer, H., Teh, H.S., Kisielow, P.: The thymus selects the useful, neglects the useless and destroys the harmful. Immunol. Today 10, 57–61 (1989)CrossRefGoogle Scholar
  28. 28.
    Castillo, A., Razquin, B., Villena, A.J., Zapata, A.G., Lopes-Fierro, P.: Thymic barriers to antigen entry during the post-hatching development of the thymus of rainbow trout, Oncorhynchus mykiss. Fish Shellfish Immunol. 8, 157–170 (1998)CrossRefGoogle Scholar
  29. 29.
    Strober, S.: Total lymphoid irradiation in alloimmunity and autoimmunity. J. Pediatr. 111, 1051–1055 (1987)CrossRefGoogle Scholar
  30. 30.
    Syed, M.I., Clark, L.J., Sturrock, R.D.: Unintended benefits of immunosupression on autoimmune disease due to chemoradiation therapy for head and neck cancer. Am. J. Otolaryngol. 29, 63–65 (2008)CrossRefGoogle Scholar
  31. 31.
    Chow, D., Saper, V., Strober, S.: Renal transplant patients treated with total lymphoid irradiation show specific unresponsiveness to donor antigens the mixed leukocyte reaction (MLR). J. Immunol. 138, 3746–3750 (1987)Google Scholar
  32. 32.
    Sherer, Y., Shoenfeld, Y.: Autoimmune diseases and autoimmunity post-bone marrow transplantation. Bone Marrow Transplant 22, 873–881 (1998)CrossRefGoogle Scholar
  33. 33.
    Mandalfino, P., Rice, G., Smith, A., Klein, J.L., Rystedt, L., Ebers, G.C.: Bone marrow transplantation in multiple sclerosis. J. Neurol. 247, 691–695 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Anastasio Salazar-Bañuelos
    • 1
    • 2
  1. 1.Hotchkiss Brain Institute 
  2. 2.Department of Surgery, Division of TransplantationUniversity of CalgaryCanada

Personalised recommendations