Advertisement

Artificial Immune Systems and Kernel Methods

  • T. S. Guzella
  • T. A. Mota-Santos
  • W. M. Caminhas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5132)

Abstract

In this paper, we focus on the potential for applying Kernel Methods into Artificial Immune Systems. This is based on the fact that the commonly employed “affinity functions” can usually be replaced by kernel functions, leading to algorithms operating in the feature space. A discussion of this applicability in negative/positive selection algorithms, the dendritic cell algorithm and immune network algorithms is conducted. As a practical application, we modify the aiNet (Artificial Immune Network) algorithm to use a kernel function, and analyze its compression quality using synthetic datasets. It is concluded that the use of properly adjusted kernel functions can improve the compression quality of the algorithm. Furthermore, we briefly discuss some of the future implications of using kernel functions in immune-inspired algorithms.

Keywords

Artificial Immune System Affinity Functions Kernel Methods Immune Network aiNet 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Castro, L.N., Timmis, J.: Artificial Immune Systems: A New Computational Intelligence Approach, 1st edn. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  2. 2.
    Perelson, A.S., Oster, G.F.: Theoretical studies of clonal selection: minimal antibody repertoire size and reliability of self-non-self discrimination. J. Theor. Biol. 81(4), 645–670 (1979)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Freitas, A.A., Timmis, J.: Revisiting the foundations of artificial immune systems for data mining. IEEE Trans. Evol. Comput. 11(4), 521–540 (2007)CrossRefGoogle Scholar
  4. 4.
    Hart, E.: Not all balls are round: An investigation of alternative recognition-region shapes. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 29–42. Springer, Heidelberg (2005)Google Scholar
  5. 5.
    Hart, E., Bersini, H., Santos, F.C.: How affinity influences tolerance in an idiotypic network. J. theor. Biol. 249(3), 422–436 (2007)CrossRefGoogle Scholar
  6. 6.
    Stibor, T., Timmis, J., Eckert, C.: On the use of hyperspheres in artificial immune systems as antibody recognition regions. In: Bersini, H., Carneiro, J. (eds.) ICARIS 2006. LNCS, vol. 4163, pp. 215–228. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Vapnik, V.N.: Statistical Learning Theory. Wiley-Interscience, Chichester (1998)zbMATHGoogle Scholar
  8. 8.
    Schölkopf, B., Smola, A.J.: Learning with Kernels, 1st edn. MIT Press, Cambridge (2002)Google Scholar
  9. 9.
    Timmis, J.: Artificial immune systems - today and tomorrow. Nat. Comput. 6, 1–18 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Timmis, J., Hone, A.N.W., Stibor, T., Clark, E.: Theoretical advances in artificial immune systems. Theoretical Computer Science. Theoretical Computer Science (in press) (2008), doi:10.1016/j.tcs.2008.02.011Google Scholar
  11. 11.
    de Castro, L.N., Von Zuben, F.J.: aiNet: An artificial immune network for data analysis. In: Abbass, H.A., Sarker, R.A., Newton, C.S. (eds.) Data Mining: A Heuristic Approach, pp. 231–259. Idea Group Publishing (2001)Google Scholar
  12. 12.
    Esponda, F., Forrest, S., Helman, P.: A formal framework for positive and negative detection schemes. IEEE Trans. Syst. Man, Cybern. B 34(1), 357–373 (2004)CrossRefGoogle Scholar
  13. 13.
    Greensmith, J., Aickelin, U., Tedesco, G.: Information fusion for anomaly detection with the dendritic cell algorithm. Information Fusion(in press) (2008)Google Scholar
  14. 14.
    Timmis, J., Neal, M., Hunt, J.: An artificial immune system for data analysis. BioSystems 55, 143–150 (2000)CrossRefGoogle Scholar
  15. 15.
    Stibor, T., Timmis, J.: An investigation on the compression quality of aiNet. In: Proc. IEEE FOCI-2007, pp. 495–502 (2007)Google Scholar
  16. 16.
    Jerne, N.K.: Towards a network theory of the immune system. Ann. Inst. Pasteur. Imm. 125C, 373–389 (1974)Google Scholar
  17. 17.
    Lau, K.W., Yin, H., Hubbard, S.: Kernel self-organising maps for classification. Neurocomputing 69, 2033–2040 (2006)CrossRefGoogle Scholar
  18. 18.
    de Castro, L.N.: aiNet implementation (2000) (visited in January/2008), ftp://ftp.dca.fee.unicamp.br/pub/docs/vonzuben/lnunes/demo.zip

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • T. S. Guzella
    • 1
    • 2
  • T. A. Mota-Santos
    • 2
  • W. M. Caminhas
    • 1
  1. 1.Dept. of Electrical EngineeringFederal University of Minas GeraisBelo Horizonte (MG)Brazil
  2. 2.Dept. of Biochemistry and ImmunologyFederal University of Minas GeraisBelo Horizonte (MG)Brazil

Personalised recommendations