Advertisement

Optimization of Steel Catenary Risers for Offshore Oil Production Using Artificial Immune System

  • Ian N. Vieira
  • Beatriz S. L. P. de Lima
  • Breno P. Jacob
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5132)

Abstract

This work presents an application of Artificial Immune System (AIS) using Clonalg to the synthesis and optimization procedure of a Steel Catenary Riser (SCR) for floating oil production systems at deep and ultra-deep waters. The evaluation of the behavior of riser configurations, needed for the calculation of the fitness function in the optimization procedure by an evolutionary algorithm, requires a large number of time-consuming Finite Element analyses. Therefore, it is important to reduce the number of analyses; in this paper, the effectiveness of AIS for this purpose is assessed in this real-world industrial application. The results indicate that the AIS approach is more effective than Genetic Algorithms (GA), generating better solutions with smaller number of evaluations.

Keywords

Artificial immune System Optimization Steel Catenary Risers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lima, B.S.L.P., Jacob, B.P., Ebecken, N.F.F.: A hybrid fuzzy/genetic algorithm for the design of offshore oil production risers. International Journal for numerical methods in engineering 64, 1459–1482 (2005)zbMATHCrossRefGoogle Scholar
  2. 2.
    Jacob, B.P., Lima, B.S.L.P., Reyes, M.C.T., Torres, A.L.F.L., Mourelle, M.M., Silva, R.M.C.: Alternative Configurations for Steel Catenary Risers for Turret-Moored FPSO’s. In: Proceedings of the 9th International Offshore and Polar Engineering Conference, Brest-France, vol. 2, pp. 234–239 (1999)Google Scholar
  3. 3.
    Lagaros, N.D., Papadrakakis, M., Kokossalakis, G.: Structural optimization using evolutionary algorithms. Computers and Structures 80, 571–589 (2002)CrossRefGoogle Scholar
  4. 4.
    Shankar, N., Hajela, P.: Heuristics driven strategies for near-optimal structural topology development. In: Topping, B.H.V. (ed.) Artificial intillegence structural engineering, pp. 219–226. Civil-Comp. Press, Oxford (1991)Google Scholar
  5. 5.
    Hajela, P., Lee, E., Lin, C.-Y.: Genetic algorithms in structural topology optimization. In: Bendsoe, M.P., Mota Soares, C.A. (eds.) Topology design of structures, pp. 117–133 (1993)Google Scholar
  6. 6.
    Degertekin, S.O., Saka, M.P., Hayalioglu, M.S.: Optimal Load and Resistance Factor Design of Non-Linear Steel Space Frames via Tabu Search and Genetic Algorithm. Engineering Structures 30, 197–205 (2008)CrossRefGoogle Scholar
  7. 7.
    Fawaz, Z., Xu, Y.G., Behdinan, K.: Hybrid evolutionary algorithm and application to structural optimization. Struct. Multidisc. Optim. 30, 219–226 (2005)CrossRefGoogle Scholar
  8. 8.
    Fonseca, L.G., Barbosa, H.J.C., Lemonge, A.: A Genetic Algorithm with similarity-based fitness approximation for structural optimization. In: Proceedings of the XXVII Iberian Latin American Conference of Computational Methods in Engineering (2006)Google Scholar
  9. 9.
    Yoo, J., Hajela, P.: Immune Network Simulations in Multicriterion Design. In: Structural and Multidisciplinary Optimization, vol. 18, pp. 85–94. Springer, Heidelberg (1999)Google Scholar
  10. 10.
    Luh, G.C., Chueh, C.H.: Multi-objective Optimal Design of Truss Structure with Immune Algorithm. Computer and Structures 82, 829–844 (2004)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Hart, E., Timmis, J.: Application areas of AIS: The past, the present and the future. Applied Soft Computing 8, 191–201 (2008)CrossRefGoogle Scholar
  12. 12.
    de Castro, L.N., Zuben, F.J.V.: Learning and Optimization Using the Clonal Selection Principle. IEEE Transactions on Evolutionary Computation, Special Issue on Artificial Immune Systems (2001)Google Scholar
  13. 13.
    de Castro, L.N., Timmis, J.: An Artificial Immune Network for Multimodal Function Optimization. In: CEC 2002, Proceedings of the 2002 Congress Evolutionary Computation, vol. 1, pp. 699–704 (2002)Google Scholar
  14. 14.
    Sompayrac, L.M.: How Immune System Works. Blackwell Publishing, Malden (2003)Google Scholar
  15. 15.
    Pina, A.A., de, A.C.H., Lima, B.S.L.P., Jacob, B.P.: Particle Swarm Optimization applied in design of risers structures Symposium of Computational Mechanics - SIMMEC (in Portuguese) (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ian N. Vieira
    • 1
  • Beatriz S. L. P. de Lima
    • 1
    • 2
  • Breno P. Jacob
    • 1
  1. 1.COPPE and Polytechnic School /Federal University of Rio de JaneiroRio de JaneiroBrazil
  2. 2.Polytechnic School /Federal University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations