Advertisement

An Artificial Immune System for Evolving Amino Acid Clusters Tailored to Protein Function Prediction

  • A. Secker
  • M. N. Davies
  • A. A. Freitas
  • J. Timmis
  • E. Clark
  • D. R. Flower
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5132)

Abstract

This paper addresses the classification task of data mining (a form of supervised learning) in the context of an important bioinformatics problem, namely the prediction of protein functions. This problem is cast as a hierarchical classification problem, where the protein functions to be predicted correspond to classes that are arranged in a hierarchical structure, in the form of a class tree. The main contribution of this paper is to propose a new Artificial Immune System that creates a new representation for proteins, in order to maximize the predictive accuracy of a hierarchical classification algorithm applied to the corresponding protein function prediction problem.

Keywords

artificial immune systems data mining bioinformatics classification clustering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrews, P.: opt-aiNet source code in Java, last modified October 2005 (Personal communication, 10 July 2007)Google Scholar
  2. 2.
    Andrews, P.S., Timmis, J.: On Diversity and Artificial Immune Systems: Incorporating a Diversity Operator into aiNet. In: Apolloni, B., Marinaro, M., Nicosia, G., Tagliaferri, R. (eds.) WIRN 2005 and NAIS 2005. LNCS, vol. 3931, pp. 293–306. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Bissantz, C.: Conformational changes of G protein-coupled receptors during their activation by agonist binding. J. Recept. Signal. Transduct. Res. 23, 123–153 (2003)CrossRefGoogle Scholar
  4. 4.
    Brownlee, J. WEKA Classification Algorithms. Version 1.6. (retrieved December 2006), http://sourceforge.net/projects/wekaclassalgos (2006)
  5. 5.
    Chothia, C., Finkelstein, A.V.: The Classification and Origins of Protein Folding Patterns. Annual Review of Biochemistry 59, 1007–1035 (1990)CrossRefGoogle Scholar
  6. 6.
    Christopoulos, A., Kenakin, T.G.: Protein-coupled receptor allosterism and complexing. Pharmacology Review 54, 323–374 (2002)CrossRefGoogle Scholar
  7. 7.
    Cui, J., Han, L.Y., Li, H., Ung, C.Y., Tang, Z.Q., Zheng, C.J., Cao, Z.W., Chen, Y.Z.: Computer prediction of allergen proteins from sequence-derived protein structural and physicochemical properties. Mollecular Immunology 44, 514–520 (2007)CrossRefGoogle Scholar
  8. 8.
    Davies, M.N., Secker, A., Freitas, A.A., Mendao, M., Timmis, J., Flower, D.R.: On the hierarchical classification of G Protein-Coupled Receptors. Bioinformatics 23(23), 3113–3118 (2007)CrossRefGoogle Scholar
  9. 9.
    de Castro, L., Von Zuben, F.: Learning and Optimization Using the Clonal Selection Principle. IEEE Transactions on Evolutionary Computation, Special Issue on Artificial Immune Systems 6(3), 239–251 (2001)Google Scholar
  10. 10.
    de Castro, L.N., Timmis, J.: An artificial immune network for multimodal optimisation. In: Congress on Evolutionary Computation (CEC 2002). Part of the 2002 IEEE World Congress on Computational Intelligence, Honolulu, Hawaii, USA, pp. 699–704. IEEE, Los Alamitos (2002)Google Scholar
  11. 11.
    de Castro, L.N., Timmis, J.: Artificial Immune Systems: A New Computational Intelligence Approach. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  12. 12.
    Gether, U., Asmar, F., Meinild, A.K., Rasmussen, S.G.: Structural basis for activation of G-protein-coupled receptors. Pharmacological Toxicology 91, 304–312 (2002)CrossRefGoogle Scholar
  13. 13.
    Klabunde, T., Hessler, G.: Drug Design Strategies for Targeting G-Protein Coupled Receptors. Chem. Bio. Chem. 3, 928–944 (2002)Google Scholar
  14. 14.
    Secker, A., Davies, M.N., Freitas, A.A., Timmis, J., Mendao, M., Flower, D.R.: An Experimental Comparison of Classification Algorithms for the Hierarchical Prediction of Protein Function. Expert Update (Magazine of the British Computer Society’s Specialist Group on AI), Special Issue on the 3rd UK KDD (Knowledge Discovery and Data Mining) Symposium 9(3), 17–22 (2007)Google Scholar
  15. 15.
    Secker, A., Davies, M.N., Freitas, A.A., Timmis, J., Mendao, M., Flower, D.R.: An Experimental Comparison of Classification Algorithms for the Hierarchical Prediction of Protein Function. In: 3rd UK Data mining and Knowledge Discovery Symposium (UKKDD 2007), Canterbury, pp. 13–18 (2007)Google Scholar
  16. 16.
    Timmis, J., Edmonds, C.: A Comment on opt-AINet: An Immune Network Algorithm for Optimisation. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 308–317. Springer, Heidelberg (2004)Google Scholar
  17. 17.
    Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)zbMATHGoogle Scholar
  18. 18.
    Zhang, Z.H., Tammi, M.T., Zhang, G.L., Tong, J.C.: Prediction of protein allergenicity using local description of amino acid sequence (unpublished) (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • A. Secker
    • 1
  • M. N. Davies
    • 2
  • A. A. Freitas
    • 1
  • J. Timmis
    • 3
  • E. Clark
    • 3
  • D. R. Flower
    • 2
  1. 1.Computing Laboratory and Centre for BioMedical InformaticsUniversity of KentCanterburyUK
  2. 2.The Jenner InstituteUniversity of OxfordCompton, NewburyUK
  3. 3.Departments of Computer Science and ElectronicsUniversity of YorkYorkUK

Personalised recommendations