Advertisement

Flexible Immune Network Recognition System for Mining Heterogeneous Data

  • Mazidah Puteh
  • Abdul Razak Hamdan
  • Khairuddin Omar
  • Azuraliza Abu Bakar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5132)

Abstract

Artificial Immune System (AIS) is an emerging technique for the classification task and proved to be a reliable technique. In previous studies, many classifiers including AIS classifiers require the data to be in numerical or categorical data types prior to processing. The transformation of data into any other specific types from their original form can degrade the originality of the data and consume more space and pre processing time. This paper introduces AIS model using immune network for classifying heterogeneous data in its original types. The model is able to process the data with the types as represented in the database and it solves some bias problems highlighted in the AIS review papers. To ensure the consistent conditions and fair comparison, the selected existing algorithms use the same set of data as used in the proposed model. Experimental results show that this network-based model produces a better accuracy rate than the existing population-based immune algorithm and than the standard classifiers on most of the data from University of California, Irvive (UCI) Machine Learning Repository (MLR) and University of California, Riverside (UCR) Time Series Data (TSR).

Keywords

artificial immune system (AIS) classification immune network heterogeneous accuracy significant difference 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brownlee, J.: Artificial Immune Recognition System (AIRS) A review and Analysis. CISCP, Faculty of Information and Communication Technology, Swinburne University of Technology, Australia, Technical Report 1-02 (2005)Google Scholar
  2. 2.
    Brownlee, J.: Clonal Selection Theory, ClonalG and The Clonal Selection Classification Algorithm (CSCA). CISCP, Faculty of Information and Communication Technology, Swinburne University of Technology, Australia, Technical Report 1-02 (2005)Google Scholar
  3. 3.
    Brownlee, J.: Immunos-81 The Misunderstood Artificial Immune System. CISCP, Faculty of Information and Communication Technology, Swinburne University of Technology, Australia, Technical Report 1-02 (2005)Google Scholar
  4. 4.
    Carter, J.H.: The Immune Systems as a Model for Pattern Recognition and Classification. Journal of the American Medical Informatics Association 7 (1) (2000)Google Scholar
  5. 5.
    Coakes, S.J., Steed, L.G.: SPSS Analysis without Anguish Version 11.0 for Windows. John Wiley and Sons Australia, Ltd (2003)Google Scholar
  6. 6.
    Cover, T.M., Hart, P.E.: Nearest Neighbor Pattern Classification. IEEE Transactions on Information Theory 13(1), 21–27 (1967)zbMATHCrossRefGoogle Scholar
  7. 7.
    Dasarathy, Belur, V.: Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques. IEEE Computer Society Press, Los Alamitos (1991)Google Scholar
  8. 8.
    Dasgupta, D.: Advances in Artificial Immune Systems. IEEE Computational Intelligence Magazine (2006)Google Scholar
  9. 9.
    de Castro, L.N., von Zuben, F.J.: Learning and Optimization Using the Clonal Selection Principle. IEEE Transactions on Evolutionary Computation 6(3), 239–251 (2002)CrossRefGoogle Scholar
  10. 10.
    de Castro, L.N., Timmis, J.: Artificial Immune Systems: A New Computational Intelligence Approach. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  11. 11.
    Freitas, A., Timmis, J.: Revisiting the Foundations of Artificial Immune Systems for Data Mining. IEEE Transactions on Evolutionary Computation 11(4) (2007)Google Scholar
  12. 12.
    Hamaker, J., Boggess, L.: Non-Euclidean Distance Measures in AIRS, an Artificial Immune Classification System. In: Proceedings of CEC 2004 (2004)Google Scholar
  13. 13.
    Hart, E., Ross, P.: Studies on the Implications of Shape-Space Models for Idiotypic Networks. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 413–426. Springer, Heidelberg (2004)Google Scholar
  14. 14.
    Hart, P.E.: The Condensed Nearest Neighbor Rule. IEEE Transactions on Information Theory 14, 515–516 (1968)CrossRefGoogle Scholar
  15. 15.
    Hunt, J.E., Cooke, D.E.: Learning Using an Artificial Immune System. Journal of Network Computer Applications 19, 189–212 (1996)CrossRefGoogle Scholar
  16. 16.
    Keogh, E.: UCR Time Series Data Mining Archive. University of California, Riverside, USA (2006), http://www.cs.ucr.edu/~eamonn/TSDMA/index.html
  17. 17.
    Merz, C.J., Murphy, P.M.: UCI Machine Learning Repository. University of California, Irvine, USA (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html
  18. 18.
    Stanfill, C., Waltz, D.: Towards Memory-based Reasoning. ACM 29, 1213–1228 (1986)CrossRefGoogle Scholar
  19. 19.
    Timmis, J.: Artificial Immune Systems: A Novel Data Analysis Technique Inspired by the Immune Network Theory. Ph. D. thesis, Department of Computer Science, University of Wales, Aberystwyth (2001)Google Scholar
  20. 20.
    Timmis, J.: Challenges for Artificial Immune System. In: Apolloni, B., Marinaro, M., Nicosia, G., Tagliaferri, R. (eds.) WIRN 2005 and NAIS 2005. LNCS, vol. 3931, pp. 355–367. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Ventura, Dan, Martinez, T.R.: An Empirical Comparison of Discretization Methods. In: Proceedings of the 10th International Symposium on Computer and Information Sciences, pp. 443-450 (1995)Google Scholar
  22. 22.
    Watkins, A.: A Resource Limited Artificial Immune Classifier. Master’s Thesis, Mississippi State University (2001)Google Scholar
  23. 23.
    Watkins, A., Timmis, J., Boggess, L.: Artificial Immune Recognition System (AIRS): An Immune-Inspired Supervised Learning Algorithm. Genetic Programming and Evolvable Machines 5, 291–317 (2004)CrossRefGoogle Scholar
  24. 24.
    Watkins, A., Timmis, A.: Artificial Immune Recognition System (AIRS): Revisions and Refinements. In: Proceeding of ICARIS 2002, pp. 173–181. Springer, Heidelberg (2002)Google Scholar
  25. 25.
    Watkins, A., Timmis, J.: Exploiting the Parallelism Inherent in AIRS, an Artificial Immune Classifier. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 427–438. Springer, Heidelberg (2004)Google Scholar
  26. 26.
    Wilson, D.R., Martinez, T.R.: Improved Heterogeneous Distance Functions. Journal of Artificial Intelligence Research 6, 1–34 (1997)zbMATHMathSciNetGoogle Scholar
  27. 27.
    Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann Publishers, San Francisco (2005)zbMATHGoogle Scholar
  28. 28.
    Zwitter, M., Milan Soklic, M.: Institute of Oncology, University Medical Center, Ljubljana, Yugoslavia (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Mazidah Puteh
    • 1
  • Abdul Razak Hamdan
    • 2
  • Khairuddin Omar
    • 1
  • Azuraliza Abu Bakar
    • 1
  1. 1.Universiti Teknologi MARATerengganuMalaysia
  2. 2.Universiti Kebangsaan MalaysiaBangiMalaysia

Personalised recommendations