Advertisement

Improving Artificial Immune System Performance: Inductive Bias and Alternative Mutations

  • Pupong Pongcharoen
  • Warattapop Chainate
  • Sutatip Pongcharoen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5132)

Abstract

Research works related to the Artificial Immune System (AIS) and their applications have been extensively reported during the last decade. In this work, we proposed an inductive bias heuristic called neighbourhood improvement within the classical AIS for improving its performance. We also demonstrated alternative mutation mechanisms for cloning the elite antibodies. Computational experiments using the proposed heuristic and mechanisms to find the near optimal solutions of travelling salesman problems were conducted. The results obtained from the modified AIS were compared with those obtained from other metaheuristics. It was found that the performance of the modified AIS adopting the proposed heuristic and mechanisms outperformed the conventional AIS and other metaheuristics.

Keywords

Artificial Immune System Genetic Algorithms Particle Swarm Optimisation Simulated Annealing Tabu Search Travelling Salesman 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Computing surveys 35, 268–308 (2003)CrossRefGoogle Scholar
  2. 2.
    Nagar, A., Haddock, J., Heragu, S.: Multiple and bicriteria scheduling: A literature survey. European Journal of Operational Research 81, 88–104 (1995)zbMATHCrossRefGoogle Scholar
  3. 3.
    Chen, K., Ji, P.: A mixed integer programming model for advanced planning and scheduling (APS). European Journal of Operational Research 181, 515–522 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Brucker, P., Knust, S., Schoo, A., Thiele, O.: A branch and bound algorithm for the resource-constrained project scheduling problem. European Journal of Operational Research 107, 272–288 (1998)zbMATHCrossRefGoogle Scholar
  5. 5.
    Choi, J., Realff, M.J., Lee, J.H.: Dynamic programming in a heuristically confined state space: a stochastic resource-constrained project scheduling application. Computers & Chemical Engineering 28, 1039–1058 (2004)CrossRefGoogle Scholar
  6. 6.
    Engin, O., Doyen, A.: Artificial immune systems and applications in industrial problems. G. U. Journal of Science. 17, 71–84 (2004)Google Scholar
  7. 7.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimisation by simulated annealing. Science 220, 671–679 (1983)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Glover, F.: Tabu search - part I. ORSA Journal on Computing 1, 190–206 (1986)Google Scholar
  9. 9.
    Haykin, S.: Neural networks: A comprehensive foundation, 2nd edn. Prentice-Hall, Englewood Cliffs (1999)zbMATHGoogle Scholar
  10. 10.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimisation and Machine Learning. Addison-Wesley, Massachusetts (1989)Google Scholar
  11. 11.
    Eusuff, M., Lansey, K., Pasha, F.: Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization. Engineering Optimization 38, 129–154 (2006)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann Publishers, San Francisco (2001)Google Scholar
  13. 13.
    Dorigo, M., Stutzle, T.: Ant Colony Optimization. Bradford Book, Massachusetts (2004)zbMATHGoogle Scholar
  14. 14.
    Hart, E.A., Timmis, J.: Application areas of AIS: The past, the present and the future. Applied Soft Computing 8, 191–201 (2008)CrossRefGoogle Scholar
  15. 15.
    Aytug, H., Knouja, M., Vergara, F.E.: Use of genetic algorithms to solve production and operations management problems: a review. International Journal of Production Research 41, 3955–4009 (2003)CrossRefGoogle Scholar
  16. 16.
    Chaudhry, S.S., Luo, W.: Application of genetic algorithms in production and operations management: a review. International Journal of Production Research 43, 4083–4101 (2005)zbMATHCrossRefGoogle Scholar
  17. 17.
    Dorigo, M., Blum, C.: Ant colony optimization theory: A survey. Theoretical Computer Science 344, 243–278 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Dasgupta, D.: Artificial Immune Systems and Their Applications. Springer, Heidelberg (1998)Google Scholar
  19. 19.
    De Castro, L.: Artificial Immune Systems: Theory and Applications. In: Brazilian Symposium on Neural Networks, Rio de Janeiro, Brazil (2000)Google Scholar
  20. 20.
    Timmis, J.: Artificial Immune Systems - today and tomorrow. Natural Computing 6, 1–18 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Freitas, A., Timmis, J.: Revisiting the Foundations of Artificial Immune Systems: A Problem-Oriented Perspective. In: Timmis, J., Bentley, P.J., Hart, E. (eds.) ICARIS 2003. LNCS, vol. 2787, pp. 229–241. Springer, Heidelberg (2003)Google Scholar
  22. 22.
    Chandrasekaran, M., Asokan, P., Kumanan, S., Balamurugan, T., Nickolas, S.: Solving job shop scheduling problems using artificial immune system. International Journal of Advanced Manufacturing Technology 31, 580–593 (2006)CrossRefGoogle Scholar
  23. 23.
    Engin, O., Doyen, A.: A new approach to solve hybrid flow shop scheduling problems by artificial immune system. Future Generation Computer Systems 20, 1083–1095 (2004)CrossRefGoogle Scholar
  24. 24.
    Pongcharoen, P., Chainate, W., Thapatsuwan, P.: Exploration of genetic parameters and operators through travelling salesman problem. Science Asia 33, 215–222 (2007)CrossRefGoogle Scholar
  25. 25.
    Pongcharoen, P., Stewardson, D.J., Hicks, C., Braiden, P.M.: Applying designed experiments to optimize the performance of genetic algorithms used for scheduling complex products in the capital goods industry. Journal of Applied Statistic 28, 441–455 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Murata, T., Ishibuchi, H.: Performance evaluation of genetic algorithms for flowshop scheduling problems. In: Proceedings of the First IEEE Conference on Evolutionary Computation, pp. 812–817 (1994)Google Scholar
  27. 27.
    Murphy, K., Travers, P., Walport, M.: Janeway’s Immunobiology. Garland Science (2007)Google Scholar
  28. 28.
    Dasgupta, D.: Advances in artificial immune systems. IEEE computational intelligence magazine, 40-49 (November 2006)Google Scholar
  29. 29.
    TSPLIB. Travelling salesman problem library, http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
  30. 30.
    Agarwal, R., Tiwari, M.K., Mukherjee, S.K.: Artificial immune system based approach for solving resource constraint project scheduling problem. International Journal of Advanced Manufacturing Technology 34, 584–593 (2007)CrossRefGoogle Scholar
  31. 31.
    Lundy, M., Mees, A.: Convergence of an annealing algorithm. Mathematical Programming 34, 111–124 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Glass, C.A., Potts, C.N.: A comparison of local search methods for flow shop scheduling. Annals of Operations Research 63, 489–509 (1996)zbMATHCrossRefGoogle Scholar
  33. 33.
    Azimi, Z.N.: Hybrid heuristics for Examination Timetabling problem. Applied Mathematics and Computation 163, 705–733 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Pongcharoen, P., Promtet, W.: Exploring and determining genetic algorithms parameters through experimental design and analysis. In: Proceedings of the 33rd international conference on computers and industrial engineering, Jeju, Korea (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Pupong Pongcharoen
    • 1
  • Warattapop Chainate
    • 1
  • Sutatip Pongcharoen
    • 2
  1. 1.Department of Industrial Engineering ,Faculty of Engineering  
  2. 2.Department of Medicine, Faculty of MedicineNaresuan UniversityPitsanulokThailand

Personalised recommendations