A Neuro-Immune Inspired Robust Real Time Visual Tracking System

  • Yang Liu
  • Jon Timmis
  • Tim Clarke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5132)


We present a novel Neuro-Immune inspired real-time tracking system that is capable of tracking morphing moving targets over non-benign backgrounds. We have employed ideas from antigen-presenting cells, T-cell interaction, together with cytokine interaction with neural systems. Our experiments show that the neuro-immune tracking system has the ability to maintain tracking a target even if the target changes shape, or is covered for periods of time by other objects.


Neuro-Immune inspired Visual tracking Morphing target Non-benign background Cellular Immune Network (CIN) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Strom, J., Jebara, T., Basu, S., Pentland, A.: Real time tracking and modeling of faces: An ekf-based analysis by synthesis approach, Corfu, Greece (1999)Google Scholar
  2. 2.
    Jain, R.C., Kasturi, R., Schunck, B.G.: Machine Vision. McGraw-Hill, New York (1995)Google Scholar
  3. 3.
    Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modeling with front propagation: A level set approach. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(2), 158–175 (1995)CrossRefGoogle Scholar
  4. 4.
    Oliver, N.M., Rosario, B., Pentland, A.P.: A bayesian computer vision system for modeling human interactions. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 831–843 (2000)CrossRefGoogle Scholar
  5. 5.
    Rosin, P.L.: Training cellular automata for image processing. IEEE Transactions on Image Processing 15, 2076–2087 (2006)CrossRefGoogle Scholar
  6. 6.
    Murguia, M.I.C.: Texture segmentation by the 64x64 cnn chip. In: 7th Int. WS on Cellular Neural Networks and their Application: Nonlinear Information Processing and Intelligent Sensors, pp. 547–554 (2002)Google Scholar
  7. 7.
    Murguia, M.I.C., Zimmerman, A.S., Pablo Rivas, P.: Image processing applications with a pcnn. Advances in Neural Networks, 884–893 (2007)Google Scholar
  8. 8.
    de Castro, L.N., Timmis, J.: Artificial Immune systems: A new Computation Intelligence Approach. Springer, Heidelberg (2002)Google Scholar
  9. 9.
    Timmis, J., Neal, M.: Artificial homeostasis: Integrating biologically inspired computing. Technical Report UWA-DCS-03-043, University of Wales, Aberystwyth (February 2003)Google Scholar
  10. 10.
    Neal, M.: Don’t touch me, i’m fine: Robot autonomy using an artificial innate immune system. In: Bersini, H., Carneiro, J. (eds.) ICARIS 2006. LNCS, vol. 4163, pp. 349–361. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Wan, E.A., Nelson, A.T.: Neural dual extended kalman filtering: Applications in speech enhancement and monaural blind signal separation. In: IEEE Workshop on Neural Networks for Signal Processing, pp. 466–475 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Yang Liu
    • 1
  • Jon Timmis
    • 1
    • 2
  • Tim Clarke
    • 1
  1. 1.Department of ElectronicsUniversity of YorkUK
  2. 2.Department of Computer ScienceUniversity of YorkUK

Personalised recommendations