Advertisement

A Neuro-Immune Inspired Robust Real Time Visual Tracking System

  • Yang Liu
  • Jon Timmis
  • Tim Clarke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5132)

Abstract

We present a novel Neuro-Immune inspired real-time tracking system that is capable of tracking morphing moving targets over non-benign backgrounds. We have employed ideas from antigen-presenting cells, T-cell interaction, together with cytokine interaction with neural systems. Our experiments show that the neuro-immune tracking system has the ability to maintain tracking a target even if the target changes shape, or is covered for periods of time by other objects.

Keywords

Neuro-Immune inspired Visual tracking Morphing target Non-benign background Cellular Immune Network (CIN) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Strom, J., Jebara, T., Basu, S., Pentland, A.: Real time tracking and modeling of faces: An ekf-based analysis by synthesis approach, Corfu, Greece (1999)Google Scholar
  2. 2.
    Jain, R.C., Kasturi, R., Schunck, B.G.: Machine Vision. McGraw-Hill, New York (1995)Google Scholar
  3. 3.
    Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modeling with front propagation: A level set approach. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(2), 158–175 (1995)CrossRefGoogle Scholar
  4. 4.
    Oliver, N.M., Rosario, B., Pentland, A.P.: A bayesian computer vision system for modeling human interactions. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 831–843 (2000)CrossRefGoogle Scholar
  5. 5.
    Rosin, P.L.: Training cellular automata for image processing. IEEE Transactions on Image Processing 15, 2076–2087 (2006)CrossRefGoogle Scholar
  6. 6.
    Murguia, M.I.C.: Texture segmentation by the 64x64 cnn chip. In: 7th Int. WS on Cellular Neural Networks and their Application: Nonlinear Information Processing and Intelligent Sensors, pp. 547–554 (2002)Google Scholar
  7. 7.
    Murguia, M.I.C., Zimmerman, A.S., Pablo Rivas, P.: Image processing applications with a pcnn. Advances in Neural Networks, 884–893 (2007)Google Scholar
  8. 8.
    de Castro, L.N., Timmis, J.: Artificial Immune systems: A new Computation Intelligence Approach. Springer, Heidelberg (2002)Google Scholar
  9. 9.
    Timmis, J., Neal, M.: Artificial homeostasis: Integrating biologically inspired computing. Technical Report UWA-DCS-03-043, University of Wales, Aberystwyth (February 2003)Google Scholar
  10. 10.
    Neal, M.: Don’t touch me, i’m fine: Robot autonomy using an artificial innate immune system. In: Bersini, H., Carneiro, J. (eds.) ICARIS 2006. LNCS, vol. 4163, pp. 349–361. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Wan, E.A., Nelson, A.T.: Neural dual extended kalman filtering: Applications in speech enhancement and monaural blind signal separation. In: IEEE Workshop on Neural Networks for Signal Processing, pp. 466–475 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Yang Liu
    • 1
  • Jon Timmis
    • 1
    • 2
  • Tim Clarke
    • 1
  1. 1.Department of ElectronicsUniversity of YorkUK
  2. 2.Department of Computer ScienceUniversity of YorkUK

Personalised recommendations