Skip to main content

Linkage Learning Accuracy in the Bayesian Optimization Algorithm

  • Chapter
Linkage in Evolutionary Computation

Part of the book series: Studies in Computational Intelligence ((SCI,volume 157))

Summary

The Bayesian optimization algorithm (BOA) uses Bayesian networks to learn linkages between the decision variables of an optimization problem. This chapter studies the influence of different selection and replacement methods on the accuracy of linkage learning in BOA. Results on concatenated m-k deceptive trap functions show that the model accuracy depends on a large extent on the choice of selection method and to a lesser extent on the replacement strategy used. Specifically, it is shown that linkage learning in BOA is more accurate with truncation selection than with tournament selection. The choice of replacement strategy is important when tournament selection is used, but it is not relevant when using truncation selection. On the other hand, if performance is our main concern, tournament selection and restricted tournament replacement should be preferred.

Additionally, the learning procedure of Bayesian networks in BOA is investigated to clarify the difference observed between tournament and truncation selection in terms of model quality. It is shown that if the metric that scores candidate networks is changed to take into account the nature of tournament selection, the linkage learning accuracy with tournament selection improves dramatically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackley, D.H.: A connectionist machine for genetic hill climbing. Kluwer Academic, Boston (1987)

    Google Scholar 

  2. Blickle, T., Thiele, L.: A comparison of selection schemes used in genetic algorithms. Evolutionary Computation 4(4), 311–347 (1997)

    Google Scholar 

  3. Brindle, A.: Genetic Algorithms for Function Optimization. PhD thesis, University of Alberta, Edmonton, Canada. Unpublished doctoral dissertation (1981)

    Google Scholar 

  4. Chickering, D.M., Heckerman, D., Meek, C.: A Bayesian approach to learning Bayesian networks with local structure. Technical Report MSR-TR-97-07, Microsoft Research, Redmond, WA (1997)

    Google Scholar 

  5. Cooper, G.F., Herskovits, E.H.: A Bayesian method for the induction of probabilistic networks from data. Machine Learning 9, 309–347 (1992)

    MATH  Google Scholar 

  6. Correa, E.S., Shapiro, J.L.: Model complexity vs. performance in the bayesian optimization algorithm. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 998–1007. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Deb, K., Goldberg, D.E.: Analyzing deception in trap functions. Foundations of Genetic Algorithms 2, 93–108 (1993)

    Google Scholar 

  8. Echegoyen, C., Lozano, J.A., Santana, R., Larrañaga, P.: Exact bayesian network learning in estimation of distribution algorithms. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1051–1058. IEEE Press, Los Alamitos (2007)

    Chapter  Google Scholar 

  9. Friedman, N., Goldszmidt, M.: Learning bayesian networks with local structure. Graphical Models, 421–459 (1999)

    Google Scholar 

  10. Goldberg, D.E.: The Design of Innovation - Lessons from and for Competent Genetic Algorithms. Kluwer Academic Publishers, Norwell (2002)

    MATH  Google Scholar 

  11. Goldberg, D.E., Korb, B., Deb, K.: Messy genetic algorithms: Motivation, analysis, and first results. Complex Systems 3(5), 493–530 (1989)

    MATH  MathSciNet  Google Scholar 

  12. Harik, G.R.: Finding multimodal solutions using restricted tournament selection. In: Proceedings of the Sixth International Conference on Genetic Algorithms, pp. 24–31 (1995)

    Google Scholar 

  13. Hauschild, M., Pelikan, M., Lima, C.F., Sastry, K.: Analyzing probabilistic models in hierarchical BOA on traps and spin glasses. MEDAL Report No. 2007001, University of Missouri at St. Louis, St. Louis, MO (2007)

    Google Scholar 

  14. Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian networks: The combination of knowledge and statistical data. Technical Report MSR-TR-94-09, Microsoft Research, Redmond, WA (1994)

    Google Scholar 

  15. Larrañaga, P., Lozano, J.A.: Estimation of distribution algorithms: a new tool for Evolutionary Computation. Kluwer Academic Publishers, Boston (2002)

    MATH  Google Scholar 

  16. Lima, C.F., Lobo, F.G., Pelikan, M.: From mating-pool distributions to model overfitting. In: Accepted for the ACM SIGEVO Genetic and Evolutionary Computation Conference (GECCO 2008) (2008)

    Google Scholar 

  17. Lima, C.F., Pelikan, M., Sastry, K., Butz, M., Goldberg, D.E., Lobo, F.G.: Substructural neighborhoods for local search in the Bayesian optimization algorithm. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 232–241. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Lima, C.F., Sastry, K., Goldberg, D.E., Lobo, F.G.: Combining competent crossover and mutation operators: a probabilistic model building approach. In: Beyer, H., et al. (eds.) Proceedings of the ACM SIGEVO Genetic and Evolutionary Computation Conference (GECCO 2005), pp. 735–742. ACM Press, New York (2005)

    Chapter  Google Scholar 

  19. Mühlenbein, H., Schlierkamp-Voosen, D.: Predictive models for the breeder genetic algorithm: I. Continuous parameter optimization. Evolutionary Computation 1(1), 25–49 (1993)

    Article  Google Scholar 

  20. Pearl, J.: Probabilistic reasoning in intelligent systems: Networks of plausible inference. Morgan Kaufmann, San Mateo (1988)

    Google Scholar 

  21. Pelikan, M.: Hierarchical Bayesian Optimization Algorithm: Toward a New Generation of Evolutionary Algorithms. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  22. Pelikan, M., Goldberg, D.E.: Escaping hierarchical traps with competent genetic algorithms. In: Spector, L., et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001), pp. 511–518. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  23. Pelikan, M., Goldberg, D.E., Cantu-Paz, E.: BOA: The Bayesian Optimization Algorithm. In: Banzhaf, W., et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference GECCO 1999, pp. 525–532. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  24. Pelikan, M., Goldberg, D.E., Lobo, F.: A survey of optimization by building and using probabilistic models. Computational Optimization and Applications 21(1), 5–20 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Pelikan, M., Sastry, K.: Fitness inheritance in the bayesian optimization algorithm. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 48–59. Springer, Heidelberg (2004)

    Google Scholar 

  26. Santana, R., Larrañaga, P., Lozano, J.A.: Interactions and dependencies in estimation of distribution algorithms. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1418–1425. IEEE Press, Los Alamitos (2005)

    Chapter  Google Scholar 

  27. Sastry, K.: Evaluation-relaxation schemes for genetic and evolutionary algorithms. Master’s thesis, University of Illinois at Urbana-Champaign, Urbana, IL (2001)

    Google Scholar 

  28. Sastry, K., Abbass, H.A., Goldberg, D.E., Johnson, D.D.: Sub-structural niching in estimation distribution algorithms. In: Beyer, H., et al. (eds.) Proceedings of the ACM SIGEVO Genetic and Evolutionary Computation Conference (GECCO 2005). ACM Press, New York (2005)

    Google Scholar 

  29. Sastry, K., Goldberg, D.E.: Designing competent mutation operators via probabilistic model building of neighborhoods. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 114–125. Springer, Heidelberg (2004)

    Google Scholar 

  30. Sastry, K., Lima, C.F., Goldberg, D.E.: Evaluation relaxation using substructural information and linear estimation. In: Keijzer, M., et al. (eds.) Proceedings of the ACM SIGEVO Genetic and Evolutionary Computation Conference (GECCO 2006), pp. 419–426. ACM Press, New York (2006)

    Chapter  Google Scholar 

  31. Sastry, K., Pelikan, M., Goldberg, D.E.: Efficiency enhancement of genetic algorithms via building-block-wise fitness estimation. In: Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 720–727 (2004)

    Google Scholar 

  32. Thierens, D., Goldberg, D.E.: Mixing in genetic algorithms. In: Forrest, S. (ed.) Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 38–45. Morgan Kaufmann, San Mateo (1993)

    Google Scholar 

  33. Wu, H., Shapiro, J.L.: Does overfitting affect performance in estimation of distribution algorithms. In: Keijzer, M., others (eds.) Proceedings of the ACM SIGEVO Genetic and Evolutionary Computation Conference (GECCO 2006), pp. 433–434. ACM Press, New York (2006)

    Chapter  Google Scholar 

  34. Yu, T.-L., Goldberg, D.E.: Dependency structure matrix analysis: Offline utility of the dependency structure matrix genetic algorithm. In: Deb, K.,et al. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 355–366. Springer, Heidelberg (2004)

    Google Scholar 

  35. Yu, T.-L., Sastry, K., Goldberg, D.E.: Population size to go: Online adaptation using noise and substructural measurements. In: Lobo, F.G., et al. (eds.) Parameter Setting in Evolutionary Algorithms, pp. 205–224. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ying-ping Chen Meng-Hiot Lim

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lima, C.F., Pelikan, M., Goldberg, D.E., Lobo, F.G., Sastry, K., Hauschild, M. (2008). Linkage Learning Accuracy in the Bayesian Optimization Algorithm. In: Chen, Yp., Lim, MH. (eds) Linkage in Evolutionary Computation. Studies in Computational Intelligence, vol 157. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85068-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85068-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85067-0

  • Online ISBN: 978-3-540-85068-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics