Skip to main content

Causal Graphical Models with Latent Variables: Learning and Inference

  • Chapter
Innovations in Bayesian Networks

Part of the book series: Studies in Computational Intelligence ((SCI,volume 156))

Abstract

This chapter discusses causal graphical models for discrete variables that can handle latent variables without explicitly modeling them quantitatively. In the uncertainty in artificial intelligence area there exist several paradigms for such problem domains. Two of them are semi-Markovian causal models and maximal ancestral graphs. Applying these techniques to a problem domain consists of several steps, typically: structure learning from observational and experimental data, parameter learning, probabilistic inference, and, quantitative causal inference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali, A., Richardson, T.: Markov equivalence classes for maximal ancestral graphs. In: Proc. of the 18th Conference on Uncertainty in Artificial Intelligence (UAI), pp. 1–9 (2002)

    Google Scholar 

  • Ali, A.R., Richardson, T., Spirtes, P., Zhang, J.: Orientation rules for constructing markov equivalence classes of maximal ancestral graphs. Technical Report 476, Dept. of Statistics, University of Washington (2005)

    Google Scholar 

  • Chickering, D.: Learning equivalence classes of Bayesian-network structures. Journal of Machine Learning Research 2, 445–498 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Cooper, G.F., Yoo, C.: Causal discovery from a mixture of experimental and observational data. In: Proceedings of Uncertainty in Artificial Intelligence, pp. 116–125 (1999)

    Google Scholar 

  • Eberhardt, F., Glymour, C., Scheines, R.: On the number of experiments sufficient and in the worst case necessary to identify all causal relations among n variables. In: Proc. of the 21st Conference on Uncertainty in Artificial Intelligence (UAI), pp. 178–183 (2005)

    Google Scholar 

  • Friedman, N.: Learning belief networks in the presence of missing values and hidden variables. In: Proc. of the 14th International Conference on Machine Learning, pp. 125–133 (1997)

    Google Scholar 

  • Heckerman, D.: A tutorial on learning with bayesian networks. Technical report, Microsoft Research (1995)

    Google Scholar 

  • Huang, Y., Valtorta, M.: Pearl’s calculus of intervention is complete. In: Proc. of the 22nd Conference on Uncertainty in Artificial Intelligence (UAI), pp. 217–224 (2006)

    Google Scholar 

  • Jordan, M.I. (ed.): Learning in Graphical Models. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  • Jordan, M.I., Ghahramani, Z., Jaakkola, T., Saul, L.K.: An introduction to variational methods for graphical models. Machine Learning 37(2), 183–238 (1999)

    Article  MATH  Google Scholar 

  • Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on graphical structures and their application to expert systems. Journal of the Royal Statistical Society, series B 50, 157–244 (1988)

    MATH  MathSciNet  Google Scholar 

  • Mackay, D.: Introduction to monte carlo methods. In: Jordan, M.I. (ed.) Learning in Graphical Models, pp. 175–204. MIT Press, Cambridge (1999)

    Google Scholar 

  • Meganck, S., Leray, P., Manderick, B.: Learning causal bayesian networks from observations and experiments: A decision theoretic approach. In: Modeling Decisions in Artificial Intelligence. LNCS, pp. 58–69 (2006)

    Google Scholar 

  • Murphy, K.P.: Active learning of causal bayes net structure. Technical report, Department of Computer Science, UC Berkeley (2001)

    Google Scholar 

  • Neapolitan, R.: Learning Bayesian Networks. Prentice Hall, Englewood Cliffs (2003)

    Google Scholar 

  • Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Francisco (1988)

    Google Scholar 

  • Pearl, J.: Causality: Models, Reasoning and Inference. MIT Press, Cambridge (2000)

    MATH  Google Scholar 

  • Richardson, T., Spirtes, P.: Ancestral graph markov models. Technical Report 375, Dept. of Statistics, University of Washington (2002)

    Google Scholar 

  • Richardson, T., Spirtes, P.: Causal inference via Ancestral graph models. In: Highly Structured Stochastic Systems. Oxford Statistical Science Series, ch. 3. Oxford University Press, Oxford (2003)

    Google Scholar 

  • Russell, S.J., Norvig, P. (eds.): Artificial Intelligence: A Modern Approach. Prentice Hall, Englewood Cliffs (1995)

    MATH  Google Scholar 

  • Shpitser, I., Pearl, J.: Identification of conditional interventional distributions. In: Proc. of the 22nd Conference on Uncertainty in Artificial Intelligence (UAI), pp. 437–444 (2006)

    Google Scholar 

  • Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction and Search. MIT Press, Cambridge (2000)

    Google Scholar 

  • Spirtes, P., Meek, C., Richardson, T.: An algorithm for causal inference in the presence of latent variables and selection bias. In: Computation, Causation, and Discovery, pp. 211–252. AAAI Press, Menlo Park (1999)

    Google Scholar 

  • Tian, J.: Generating markov equivalent maximal ancestral graphs by single edge replacement. In: Proc. of the 21st Conference on Uncertainty in Artificial Intelligence (UAI), pp. 591–598 (2005)

    Google Scholar 

  • Tian, J., Pearl, J.: On the identification of causal effects. Technical Report (R-290-L), UCLA C.S. Lab (2002a)

    Google Scholar 

  • Tian, J., Pearl, J.: On the testable implications of causal models with hidden variables. In: Proc. of the 18th Conference on Uncertainty in Artificial Intelligence (UAI), pp. 519–527 (2002b)

    Google Scholar 

  • Tong, S., Koller, D.: Active learning for structure in bayesian networks. In: Seventeenth International Joint Conference on Artificial Intelligence (2001)

    Google Scholar 

  • Zhang, J.: Causal Inference and Reasoning in Causally Insufficient Systems. PhD thesis, Carnegie Mellon University (2006)

    Google Scholar 

  • Zhang, J., Spirtes, P.: A characterization of markov equivalence classes for ancestral graphical models. Technical Report 168, Dept. of Philosophy, Carnegie-Mellon University (2005a)

    Google Scholar 

  • Zhang, J., Spirtes, P.: A transformational characterization of markov equivalence for directed acyclic graphs with latent variables. In: Proc. of the 21st Conference on Uncertainty in Artificial Intelligence (UAI), pp. 667–674 (2005b)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Leray, P., Meganek, S., Maes, S., Manderick, B. (2008). Causal Graphical Models with Latent Variables: Learning and Inference. In: Holmes, D.E., Jain, L.C. (eds) Innovations in Bayesian Networks. Studies in Computational Intelligence, vol 156. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85066-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85066-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85065-6

  • Online ISBN: 978-3-540-85066-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics