Skip to main content

A Review on the Structure and Mechanical Properties of Mollusk Shells – Perspectives on Synthetic Biomimetic Materials

  • Chapter
Applied Scanning Probe Methods XIII

Part of the book series: NanoScience and Technology ((NANO))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sarikaya M, Aksay IA, (eds) (1995) Biomimetics, Design and Processing of Materials. Woodbury, NY.

    Google Scholar 

  2. Mayer G (2005) Rigid biological systems as models for synthetic composites. Science, 310(5751):1144–1147.

    Article  CAS  Google Scholar 

  3. Wegst UGK, Ashby MF (2004) The mechanical efficiency of natural materials. Philos Mag 84(21):2167–2181.

    Article  CAS  Google Scholar 

  4. Currey JD (1999) The design of mineralised hard tissues for their mechanical functions. J Exp Biol 202(23):3285–3294.

    CAS  Google Scholar 

  5. Gao HJ, Ji BH, Jager IL, Arzt E, Fratzl P (2003) Materials become insensitive to flaws at nanoscale: lessons from nature. Proc Natl Acad Sci USA 100(10):5597–5600.

    Article  CAS  Google Scholar 

  6. Ballarini R, Kayacan R, Ulm FJ, Belytschko T, Heuer AH (2005) Biological structures mitigate catastrophic fracture through various strategies. Int J Fract 135(1–4):187–197.

    Article  Google Scholar 

  7. Kohn AJ (2002) Encyclopedia of evolution: Mollusks. Oxford Unversity Press.

    Google Scholar 

  8. Currey JD, Taylor JD (1974) The mechanical behavior of some Molluskan hard tissues. J Zool (London), 173(3):395–406.

    Google Scholar 

  9. Kamat S, Su X, Ballarini, R, Heuer AH (2000) Structural basis for the fracture toughness of the shell of the conch Strombus gigas. Nature 405(6790):1036–1040.

    Article  CAS  Google Scholar 

  10. Su XW, Zhang DM, Heuer AH (2004) Tissue regeneration in the shell of the giant queen conch, Strombus gigas. Chem Mater 16(4):581–593.

    Article  CAS  Google Scholar 

  11. Chen L, Ballarini R, Kahn H, Heuer AH (2007) Bioinspired micro-composite structure. J Mater Res 22(1):124–131.

    Article  CAS  Google Scholar 

  12. Currey JD, Kohn AJ (1976) Fracture in crossed-lamellar structure of Conus Shells. J Mater Sci 11(9):1615–1623.

    Article  Google Scholar 

  13. KuhnSpearing LT, Kessler H, Chateau E, Ballarini R, Heuer AH, Spearing SM (1996) Fracture mechanisms of the Strombus gigas conch shell: implications for the design of brittle laminates. J Mater Sci 31(24):6583–6594.

    Article  CAS  Google Scholar 

  14. Kessler H, Ballarini R, Mullen RL, Kuhn LT, Heuer AH (1996) A biomimetic example of brittle toughening .1. Steady state multiple cracking. Comput Mater Sci5(1–3):157–166.

    Article  CAS  Google Scholar 

  15. Cox BN, Marshall DB (1994) Overview no 111 – concepts for bridged cracks in fracture and fatigue. Acta Metall Mater 42(2):341–363.

    Article  Google Scholar 

  16. Kamat S, Kessler H, Ballarini R, Nassirou M, Heuer AH (2004) Fracture mechanisms of the Strombus gigas conch shell: II – Micromechanics analyses of multiple cracking and large-scale crack bridging. Acta Mater 52(8):2395–2406.

    Article  CAS  Google Scholar 

  17. Aveston J, Cooper GA, Kell A (1971) Properties of fiber composites. Conference Proceedings 15, National Physical Laboratory, IPC Science and Technology Press.

    Google Scholar 

  18. Jackson AP, Vincent JFV, Turner RM (1988) The mechanical design of nacre. Proc R Soc London 234(1277):415–440.

    Google Scholar 

  19. Wang RZ, Suo Z, Evans AG, Yao N, Aksay IA (2001) Deformation mechanisms in nacre. J Mater Res 16:2485–2493.

    Article  CAS  Google Scholar 

  20. Kotha SP, Li Y, Guzelsu N (2001) Micromechanical model of nacre tested in tension. J Mater Sci 36(8):2001–2007.

    Article  CAS  Google Scholar 

  21. Barthelat F, Tang H, Zavattieri PD, Li CM, Espinosa HD (2007) On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure. J Mech Phys Solids 55(2):225–444.

    Article  CAS  Google Scholar 

  22. Evans AG, Suo Z, Wang RZ, Aksay IA, He MY, Hutchinson JW (2001) Model for the robust mechanical behavior of nacre. J Mater Res 16(9):2475–2484.

    Article  CAS  Google Scholar 

  23. Smith BL, Schaeffer TE, Viani M, Thompson JB, Frederick NA, Kindt J, Belcher A, Stucky GD, Morse DE, Hansma PK (1999) Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature (London), 399(6738):761–763.

    Article  CAS  Google Scholar 

  24. Song F, Bai YL (2003) Effects of nanostructures on the fracture strength of the interfaces in nacre. J Mater Res 18:1741–1744.

    Article  CAS  Google Scholar 

  25. Meyers MA, Lin AYM, Chen PY, Muyco J (2008) Mechanical strength of abalone nacre: role of the soft organic layer. J Mech Behaiv Biomed Mater 1(1):76–85.

    Article  Google Scholar 

  26. Su XW, Belcher AM, Zaremba CM, Morse DE, Stucky GD, Heuer AH (2002) Structural and microstructural characterization of the growth lines and prismatic microarchitecture in red abalone shell and the microstructures of abalone “flat pearls”. Chem Mater14(7):3106–3117.

    Article  CAS  Google Scholar 

  27. Lin A, Meyers MA (2005) Growth and structure in abalone shell. Mater Sci Eng A Struct Mater 390(1–2):27–41.

    Article  CAS  Google Scholar 

  28. Barthelat F, Tang H, Zavattieri PD, Li, CM, Espinosa HD (2007) On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure. J Mech Phys of Solids 55(2):306–337.

    Article  CAS  Google Scholar 

  29. Blank S, Arnoldi M, Khoshnavaz S, Treccani L, Kuntz M, Mann K, Grathwohl G, Fritz M (2003) The nacre protein perlucin nucleates growth of calcium carbonate crystals. J Microsc Oxford 212:280–291.

    Article  CAS  Google Scholar 

  30. Feng QL, Cui FZ, Pu G, Wang RZ, Li HD (2000) Crystal orientation, toughening mechanisms and a mimic of nacre. Mater Sci Eng C Biomimetic Supramol Syst 11(1):19–25.

    Google Scholar 

  31. Manne S, Zaremba CM, Giles R, Huggins L, Walters DA, Belcher A, Morse DE, Stucky GD, Didymus JM, Mann S, Hansma, PK (1994) Atomic-force microscopy of the nacreous layer in mollusk shells. Proc R Soc London Ser B-Biol Sci 256(1345):17–23.

    Article  Google Scholar 

  32. Song F, Zhang XH, Bai YL (2002) Microstructure in a biointerface. J Mater Sci Lett21:639–641.

    Article  CAS  Google Scholar 

  33. Bruet BJF, Qi HJ, Boyce MC, Panas R, Tai K, Frick L, Ortiz C (2005) Nanoscale morphology and indentation of individual nacre tablets from the gastropod mollusk Trochus niloticus. J Mater Res 20(9):2400–2419.

    Article  CAS  Google Scholar 

  34. Barthelat F, Li CM, Comi C, Espinosa HD (2006) Mechanical properties of nacre constituents and their impact on mechanical performance. J Mat Res 21(8):1977–1986.

    Article  CAS  Google Scholar 

  35. Li XD, Chang WC, Chao YJ, Wang RZ, Chang M (2004) Nanoscale structural and mechanical characterization of a natural nanocomposite material: the shell of red abalone. Nano Lett 4(4):613–617.

    Article  CAS  Google Scholar 

  36. Rousseau M, Lopez E, Stempfle P, Brendle M, Franke L, Guette A, Naslain R, Bourrat X (2005) Multiscale structure of sheet nacre. Biomaterials 26(31):6254–6262.

    Article  CAS  Google Scholar 

  37. Schaeffer TE, IonescuZanetti C, Proksch R, Fritz M, Walters DA, Almqvist N, Zaremba CM, Belcher AM, Smith BL, Stucky GD, Morse DE, Hansma PK (1997) Does abalone nacre form by heteroepitaxial nucleation or by growth through mineral bridges? Chem Mater 9(8):1731–1740.

    Article  CAS  Google Scholar 

  38. Lin AYM, Chen PY, Meyers MA (2008) The growth of nacre in the abalone shell. Acta Biomater, 4:131–138.

    Article  Google Scholar 

  39. Currey JD (1977) Mechanical properties of mother of pearl in tension. Proc R Soc London 196(1125):443–463.

    Article  Google Scholar 

  40. Barthelat F, Espinosa HD (2007) An experimental investigation of deformation and fracture of nacre-mother of pearl. Exp Mech 47(3):311–324.

    Article  Google Scholar 

  41. Menig R, Meyers MH, Meyers MA, Vecchio KS (2000) Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells. Acta Mater 48.

    Google Scholar 

  42. Barthelat F, Espinosa HD (2005) Mechanical Properties of Nacre Constituents: an inverse method approach. MRS 2004 Fall Meeting Boston.

    Google Scholar 

  43. Katti DR, Katti KS (2001) Modeling microarchitecture and mechanical behavior of nacre using 3D finite element techniques. Part 1. Elastic properties. J Mater Sci 36:1411–1417.

    Article  CAS  Google Scholar 

  44. Li XD, Xu ZH, Wang RZ (2006) In situ observation of nanograin rotation and deformation in nacre. Nano Lett 6(10):2301–2304.

    Article  CAS  Google Scholar 

  45. Ji BH, Gao HJ (2004) Mechanical properties of nanostructure of biological materials. J Mech Phys Solids 52(9):1963–1990.

    Article  Google Scholar 

  46. Lawn BR (1993) Fracture of Brittle Solids. Cambridge University Press, New York.

    Google Scholar 

  47. Kruzic J, Nalla RK, Kinney JH, Ritchie RO (2003) Crack blunting, crack bridging and resistance-curve fracture mechanics in dentin: effect of hydration. Biomaterials 24(28):5209–5221.

    Article  CAS  Google Scholar 

  48. Nalla RK, Kruzic JJ, Kinney JH, Ritchie RO (2005) Mechanistic aspects of fracture and R-curve behavior in human cortical bone. Biomaterials 26(2):217–231.

    Article  CAS  Google Scholar 

  49. Budiansky B, Hutchinson JW, Lambropoulos JC (1983) Continuum theory of dilatant transformation toughening in ceramics. Int J Solids Struct 19(4):337–355.

    Article  Google Scholar 

  50. Evans AG, Ahmad ZB, Gilbert DG, Beaumont PWR (1986) Mechanisms of toughening in rubber toughened polymers. Acta Metall 34(1):79–87.

    Article  CAS  Google Scholar 

  51. Du J, Thouless MD, Yee AF (1998) Development of a process zone in rubber-modified epoxy polymers. International J Fract 92(3):271–285.

    Article  CAS  Google Scholar 

  52. Evans AG, Hutchinson JW (1989) Effects of non-planarity on the mixed-mode fracture-resistance of bimaterial interfaces. Acta Metall 37(3):909–916.

    Article  CAS  Google Scholar 

  53. Evans AG (1990) Perspective on the development of high-toughness ceramics. J Am Ceram Soc 73(2):187–206.

    Article  CAS  Google Scholar 

  54. Clegg WJ, Kendall K, Alford NM, Button TW, Birchall JD (1990) A simple way to make tough ceramics. Nature 347(6292):455–457.

    Article  CAS  Google Scholar 

  55. Mayer G (2006) New classes of tough composite materials – lessons from natural rigid biological systems. Mater Sci Eng C Biomimetic Supramol Syst 26(8):1261–1268.

    CAS  Google Scholar 

  56. Deville S, Saiz E, Nalla RK, Tomsia AP (2006) Freezing as a path to build complex composites. Science 311(5760):515–518.

    Article  CAS  Google Scholar 

  57. Tang ZY, Kotov NA, Magonov S, Ozturk B (2003) Nanostructured artificial nacre. Nat Mater 2(6):413–U418.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barthelat, F., Rim, J., Espinosa, H. (2009). A Review on the Structure and Mechanical Properties of Mollusk Shells – Perspectives on Synthetic Biomimetic Materials. In: Bhushan, B., Fuchs, H. (eds) Applied Scanning Probe Methods XIII. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85049-6_2

Download citation

Publish with us

Policies and ethics