Skip to main content

Microtensile Tests Using In Situ Atomic Force Microscopy

  • Chapter
Applied Scanning Probe Methods XII

Part of the book series: NanoScience and Technology ((NANO))

Abstract

In recent years a new field in the micromechanical characterization of materials has emerged. Researchers started to integrate atomic force microscopes (AFM) into microtensile tests. This allowed to investigate surface deformation of layers with thicknesses in the range of micrometers. In the first part of this article experiments on organic samples are presented followed by developments on anorganic specimens. In the second part of the paper latest developments at the Center of Mechanics of ETH Zurich are presented. The setup allows to monitor crack growth with micrometer resolution. At the same time forces can be measured in the millinewton range. Specimens are made from photodefinable polyimide. The stress-crack- length diagrams of two experiments are presented which enables to identify different stages of crack growth and therefore of fracture behaviour. Finally, possible extensions of the setup employing digital image correlation (DIC) are envisioned by analyzing the displacement field around the crack tip.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Small MK, Coupeau C, Grilh J (1995) Atomic-force microscopy of in-situ deformed LiF. Scripta Metall Mater 32(10):1573–1578

    Article  CAS  Google Scholar 

  2. Goken M, Vehoff H, Neumann P (1996) Atomic force microscopy investigations of loaded crack tips in nial. J Vac Sci Technol B 14(2):1157–1161

    Article  Google Scholar 

  3. Tong W, Hector LG, Weiland H, Wieserman LF (1997) In-situ surface characterization of a binary aluminum alloy during tensile deformation. Scripta Mater 36(11):1339–1344

    Article  CAS  Google Scholar 

  4. Bhushan B (1999) Wear and mechanical characterisation on micro- to picoscales using AFM. Int Mater Rev 44(3):105–117

    Article  CAS  Google Scholar 

  5. Hild S, Gutmannsbauer W, Luth R, Fuhrmann J, Guntherodt HJ (1996) A nanoscopic view of structure and deformation of hard elastic polypropylene with scanning force microscopy. J Polym Sci Pt B-Polym Phys 34(12):1953–1959

    Article  CAS  Google Scholar 

  6. Oderkerk J, de Schaetzen G, Goderis B, Hellemans L, Groeninckx G (2002) Micromechanical deformation and recovery processes of nylon-6 rubber thermoplastic vulcanizates as studied by atomic force microscopy and transmission electron microscopy. Macromolecules 35(17):6623–6629

    Article  CAS  Google Scholar 

  7. Nishino T, Nozawa A, Kotera M, Nakamae K (2000) In situ observation of surface deformation of polymer films by atomic force microscopy. Rev Sci Instrum71(5):2094–2096

    Article  CAS  Google Scholar 

  8. Opdahl A, Somorjai GA (2001) Stretched polymer surfaces: Atomic force microscopy measurement of the surface deformation and surface elastic properties of stretched polyethylene. J Polym Sci Pt B-Polym Phys 39(19):2263–2274

    Article  CAS  Google Scholar 

  9. Bobji MS, Bhushan B (2001) In situ microscopic surface characterization studies of polymeric thin films during tensile deformation using atomic force microscopy. J Mater Res 16(3):844–855

    Article  CAS  Google Scholar 

  10. Tambe NS, Bhushan B (2004) In situ study of nano-cracking in multilayered magnetic tapes under monotonic and fatigue loading using an AFM. Ultramicroscopy 100(3–4):359–373

    Article  CAS  Google Scholar 

  11. Bhushan B, Mokashi PS, Ma T (2003) A technique to measure Poisson’s ratio of ultrathin polymeric films using atomic force microscopy. Rev Sci Instrum 74(2):1043–1047

    Article  CAS  Google Scholar 

  12. Roggemann MC, Williams JG (2002) Use of an atomic force microscope to measure surface deformations in polymeric systems. J Adhes Sci Technol 16(7):905–920

    Article  CAS  Google Scholar 

  13. Li XD, Xu WJ, Sutton MA, Mello M (2006) Nanoscale deformation and cracking studies of advanced metal evaporated magnetic tapes using atomic force microscopy and digital image correlation techniques. Mater Sci Technol 22(7):835–844

    Article  CAS  Google Scholar 

  14. Li XD, Xu WJ, Sutton MA, Mello M (2007) In situ nanoscale in-plane deformation studies of ultrathin polymeric films during tensile deformation using atomic force microscopy and digital image correlation techniques. IEEE Trans Nanotechnol 6(1):4–12

    Article  Google Scholar 

  15. Bamberg E, Grippo CP, Wanakamol P, Slocum AH, Boyce MC, Thomas EL (2006) A tensile test device for in situ atomic force microscope mechanical testing. Precis Eng-J Int Soc Precis Eng Nanotechnol 30(1):71–84

    Google Scholar 

  16. Thomas C, Ferreiro V, Coulon G, Seguela R (2007) In situ AFM investigation of crazing in polybutene spherulites under tensile drawing. Polymer 48(20):6041–6048

    Article  CAS  Google Scholar 

  17. Chasiotis I, Knauss WG (2002) A new microtensile tester for the study of MEMS materials with the aid of atomic force microscopy. Exp Mech 42(1):51–57

    Article  CAS  Google Scholar 

  18. Cho SW, Cardenas-Garcia JF, Chasiotis I (2005) Measurement of nanodisplacements and elastic properties of MEMS via the microscopic hole method. Sensor Actuat A-Phys 120(1):163–171

    Article  Google Scholar 

  19. Cho SW, Chasiotis I (2007) Elastic properties and representative volume element of polycrystalline silicon for MEMS. Exp Mech 47(1):37–49

    Article  CAS  Google Scholar 

  20. Chasiotis I, Cho SW, Jonnalagadda K (2006) Fracture toughness and subcritical crack growth in polycrystalline silicon. J Appl Mech-Trans ASME 73(5):714–722

    Article  CAS  Google Scholar 

  21. Cho SW, Jonnalagadda K, Chasiotis I (2007) Mode I and mixed mode fracture of polysilicon for MEMS. Fatigue Fract Eng Mater Struct 30(1):21–31

    Article  CAS  Google Scholar 

  22. Cho S, Chasiotis I, Friedmann TA, Sullivan JP (2005) Young’s modulus, Poisson’s ratio and failure properties of tetrahedral amorphous diamond-like carbon for MEMS devices. J Micromech Microeng 15(4):728–735

    Article  Google Scholar 

  23. Lee Y, Tada J, Isono Y (2005) Mechanical characterization of single crystal silicon and UV-LIGA nickel thin films using tensile tester operated in AFM. Fatigue Fract Eng Mater Struct 28(8):675–686

    Article  CAS  Google Scholar 

  24. Isono Y, Namazu T, Terayama N (2006) Development of AFM tensile test technique for evaluating mechanical properties of sub-micron thick DLC films. J Microelectromech Syst 15(1):169–180

    Article  Google Scholar 

  25. Haque MA, Saif MTA (2002) In-situ tensile testing of nano-scale specimens in SEM and TEM. Exp Mech 42(1):123–128

    Article  CAS  Google Scholar 

  26. LLC HD MicroSystems. Pyralin PI2720 Processing Guidelines. 1998.

    Google Scholar 

  27. Kajii H, Taneda T, Ohmori Y (2003) Organic light-emitting diode fabricated on a polymer substrate for optical links. Thin Solid Films 438:334–338

    Article  Google Scholar 

  28. Lee JG, Seol YG, Lee NE (2006) Polymer thin film transistor with electroplated source and drain electrodes on a flexible substrate. Thin Solid Films 515(2):805–809

    Article  CAS  Google Scholar 

  29. Tung S, Witherspoon SR, Roe LA, Silano A, Maynard DP, Ferraro N (2001) A MEMS-based flexible sensor and actuator system for space inflatable structures. Smart Mater Struct 10(6):1230–1239

    Article  CAS  Google Scholar 

  30. Aslam M, Gregory C, Hatfield JV (2004) Polyimide membrane for micro-heated gas sensor array. Sens Actuat B-Chem 103(1–2):153–157

    Article  Google Scholar 

  31. Kuoni A, Holzherr R, Boillat M, de Rooij NF (2003) Polyimide membrane with ZnO piezoelectric thin film pressure transducers as a differential pressure liquid flow sensor. J Micromech Microeng 13(4):S103–S107

    Article  CAS  Google Scholar 

  32. ISO527-3. Plastics-determination of tensile properties-part 3. Technical report, 1995.

    Google Scholar 

  33. Lang U, Reichen M, Dual J (2006) Fabrication of a tensile test for polymer micromechanics. Microelectron Eng 83(4–9):1182–1184

    Article  CAS  Google Scholar 

  34. Lang U, Dual J Observing crack propagation in polyimide microtensile specimens by in situ atomic force microscopy, 2008. Submitted to Exp Mech

    Google Scholar 

  35. Anderson TL (1995) Fracture mechanics: Fundamentals and applications, CRC Press, Boca Raton, p 630.

    Google Scholar 

  36. Keller J, Vogel D, Schubert A, Michel B (2004) Displacement and strain field measurements from SPM images. In: Bhushan B, Fuchs H, Hosaka S (eds) Applied scanning probe methods, volume I of Nanoscience and technology, Springer pp 253–276

    Google Scholar 

  37. Feddersen CE (1971) Evaluation and prediction of residual strength of center cracked tension panels. In: Rosenfield MS (ed) Damage tolerance in aircraft structures, vol ASTM STP 486. pp 50–86

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lang, U., Dual, J. (2009). Microtensile Tests Using In Situ Atomic Force Microscopy. In: Bhushan, B., Fuchs, H. (eds) Applied Scanning Probe Methods XII. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85039-7_8

Download citation

Publish with us

Policies and ethics