Skip to main content

Mechanical Properties of Metallic Nanocontacts

  • Chapter
Applied Scanning Probe Methods XII

Part of the book series: NanoScience and Technology ((NANO))

  • 922 Accesses

Abstract

The mechanical properties of the reduced number of atoms forming the apex of a tip are interesting both from a fundamental point of view and for the interpretation of experiments related to scanning local probe methods. These mechanical properties can be studied by establishing a very small contact, a nanocontact, between a tip and a surface. The elasticity and fracture events during the controlled breaking of a nanocontact as the tip is separated from the surface provide information about the mechanical properties of the tip apex. In the case of metallic tips, electron transport through the nanocontact also provides information on its mechanical properties, because at the scale of a few atoms forming the nanocontact the mechanical and electron transport properties are strongly related.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dürig U, Züger O, Pohl DW (1990) Phys Rev Lett 65:349

    Article  Google Scholar 

  2. Gimzewski JK, Möller R (1987) Phys Rev B 36:1284

    Article  Google Scholar 

  3. Agraït N, Yeyati AL, van Ruitenbeek JM (2003) Phys Rep-Rev Sect Phys Lett 377:81

    Google Scholar 

  4. Rubio G, Agraït N, Vieira S (1996) Phys Rev Lett 76:2302

    Article  CAS  Google Scholar 

  5. Landman U, Luedtke WD, Burnham NA, Colton RJ (1990) Science 248:454

    Article  CAS  Google Scholar 

  6. Avouris P, Chen Z, Perebeinos V (2007) Nat Nano 2:605

    Article  CAS  Google Scholar 

  7. attoAFM. Attocube systems AG

    Google Scholar 

  8. CryogenicSFM. Omicron Nanotechnolgy GmbH.

    Google Scholar 

  9. LT-SPM. NanoMagnetics Instruments

    Google Scholar 

  10. Binnig G, Rohrer H (1982) Helvetica Physica Acta 55:726

    CAS  Google Scholar 

  11. Binnig G, Quate CF, Gerber C (1986) Phys Rev Lett 56:930

    Article  Google Scholar 

  12. Rubio-Bollinger G, Joyez P, Agraït N (2004) Phys Rev Lett 93:116803

    Article  CAS  Google Scholar 

  13. Rubio-Bollinger G, Bahn SR, Agraït N, Jacobsen KW, Vieira S (2001) Phys Rev Lett 87:26101

    Article  Google Scholar 

  14. Jarvis SP, Lantz MA, Ogiso H, Tokumoto H, Durig U (1999) Appl Phys Lett 75:3132

    Article  CAS  Google Scholar 

  15. Meyer G, Amer NM (1988) Appl Phys Lett 53:1045

    Article  Google Scholar 

  16. Rugar D, Mamin HJ, Erlandsson R, Stern JE, Terris BD (1988) Rev Sci Instrum 59:2337

    Article  CAS  Google Scholar 

  17. Rugar D, Mamin HJ, Guethner P (1989) Appl Phys Lett 55:2588

    Article  CAS  Google Scholar 

  18. Stahl U, Yuan CW, Delozanne AL, Tortonese M (1994) Appl Phys Lett 65:2878

    Article  CAS  Google Scholar 

  19. Garcia R, Perez R (2002) Surf Sci Rep 47:197

    Article  CAS  Google Scholar 

  20. Giessibl FJ (2003) Rev Mod Phys 75:949

    Article  CAS  Google Scholar 

  21. Giessibl FJ (1998) Appl Phys Lett 73:3956

    Article  CAS  Google Scholar 

  22. Rychen J, Ihn T, Studerus P, Herrmann A, Ensslin K (1999) Rev Sci Instrum 70:2765

    Article  CAS  Google Scholar 

  23. Besocke K (1987) Surf Sci 181:145

    Article  CAS  Google Scholar 

  24. Pohl DW (1987) Rev Sci Instrum 58:54

    Article  CAS  Google Scholar 

  25. Renner C, Niedermann P, Kent AD, Fischer O (1990) Rev Sci Instrum 61:965

    Article  Google Scholar 

  26. Altfeder IB, Volodin AP (1993) Rev Sci Instrum 64:3157

    Article  CAS  Google Scholar 

  27. Pan SH (1993) Patent WO 9319494

    Google Scholar 

  28. Pan SH, Hudson EW, Davis JC (1999) Rev Sci Instrum 70:1459

    Article  CAS  Google Scholar 

  29. Moreland J, Ekin JW (1985) J Appl Phys 58:3888

    Article  CAS  Google Scholar 

  30. Muller CJ, Vanruitenbeek JM, Dejongh LJ (1992) Physica C 191:485

    Article  Google Scholar 

  31. Valkering AMC, Mares AI, Untiedt C, Gavan KB, Oosterkamp TH, van Ruitenbeek JM (2005) Rev Sci Instrum 76

    Google Scholar 

  32. van Ruitenbeek JM, Alvarez A, Pineyro I, Grahmann C, Joyez P, Devoret MH, Esteve D, Urbina C (1996) Rev Sci Instrum 67:108

    Article  Google Scholar 

  33. Albrecht TR, Grutter P, Horne D, Rugar D (1991) J Appl Phys 69:668

    Article  Google Scholar 

  34. Giessibl FJ (2000) Appl Phys Lett 76:1470

    Article  CAS  Google Scholar 

  35. Rensen WHJ, van Hulst NF, Ruiter AGT, West PE (1999) Appl Phys Lett 75:1640

    Article  CAS  Google Scholar 

  36. Rychen J, Ihn T, Studerus P, Herrmann A, Ensslin K, Hug HJ, van Schendel PJA, Guntherodt HJ (2000) Rev Sci Instrum 71:1695

    Article  CAS  Google Scholar 

  37. Edwards H, Taylor L, Duncan W, Melmed AJ (1997) J Appl Phys 82:980

    Article  CAS  Google Scholar 

  38. Atia WA, Davis CC (1997) Appl Phys Lett 70:405

    Article  CAS  Google Scholar 

  39. Karrai K, Grober RD (1995) In: Paesler MA, Moyer PJ (eds) Near-Field Optics (Proc. SPIE) 2535:69

    Google Scholar 

  40. Giessibl FJ, Hembacher S, Herz M, Schiller C, Mannhart J (2004) Nanotechnology 15:S79

    Google Scholar 

  41. Rychen J, Ihn T, Studerus P, Herrmann A, Ensslin K, Hug HJ, van Schendel PJA, Guntherodt HJ (2000) Appl Surf Sci 157:290

    Article  CAS  Google Scholar 

  42. Smit RHM, Grande R, Lasanta B, Riquelme JJ, Rubio-Bollinger G, Agraït N (2007) Rev Sci Instrum 78

    Google Scholar 

  43. Maxwell JC (1954) A treatise on electricity and magnetism, vol. 1. Courier Dover Publications

    Google Scholar 

  44. Knudsen M (1934) The kinetic theory of gases, Methuen

    Google Scholar 

  45. Sharvin YV (1965) Zh Eksp Teor Fiz 48:984

    Google Scholar 

  46. Torres JA, Pascual JI, Saenz JJ (1994) Phys Rev B 49:16581

    Article  CAS  Google Scholar 

  47. Scheer E, Agraït N, Cuevas JC, Yeyati AL, Ludoph B, Martin-Rodero A, Bollinger GR, van Ruitenbeek JM, Urbina C (1998) Nature 394:154

    Article  CAS  Google Scholar 

  48. Ohnishi H, Kondo Y, Takayanagi K (1998) Nature 395:780

    Article  CAS  Google Scholar 

  49. Rodrigues V, Ugarte D (2001) Phys Rev B 6307

    Google Scholar 

  50. Sadd MH (2005) Elasticity theory, applications, and numerics, Elsevier Butterworth Heinemann

    Google Scholar 

  51. Frenkel J (1926) Z Physik 37:572

    Article  Google Scholar 

  52. Untiedt C, Rubio G, Vieira S, Agraït N (1997) Phys Rev B 56:2154

    Article  CAS  Google Scholar 

  53. Duif AM, Jansen AGM, Wyder P (1989) J Phys-Condens Mat 1:3157

    Article  Google Scholar 

  54. Jansen AGM, Vangelder AP, Wyder P (1980) J Phys C-Solid State Phys 13:6073

    Article  CAS  Google Scholar 

  55. Jansen AGM, Mueller FM, Wyder P (1977) Phys Rev B 16:1325

    Article  CAS  Google Scholar 

  56. Lyndenbell RM (1994) Science 263:1704

    Article  CAS  Google Scholar 

  57. Yanson AI, Bollinger R (1998) Nature 395:783

    Article  CAS  Google Scholar 

  58. Smit RHM, Untiedt C, Yanson AI, van Ruitenbeek JM (2001) Phys Rev Lett 87:266102

    Article  CAS  Google Scholar 

  59. da Silva EZ, Novaes FD, da Silva AJR, Fazzio A (2004) Phys Rev B 69

    Google Scholar 

  60. Shiota T, Mares AI, Valkering AMC, Oosterkamp TH, van Ruitenbeek JM (2007) eprint arXiv: 0707. 4555

    Google Scholar 

  61. Agraït N, Untiedt C, Rubio-Bollinger G, Vieira S (2002) Phys Rev Lett 88:216803

    Article  Google Scholar 

  62. Brandbyge M, Kobayashi N, Tsukada M (1999) Phys Rev B 60:17064

    Article  CAS  Google Scholar 

  63. Emberly EG, Kirczenow G (1999) Phys Rev B 60:6028

    Article  CAS  Google Scholar 

  64. Okamoto M, Takayanagi K (1999) Phys Rev B 60:7808

    Article  CAS  Google Scholar 

  65. Smit RHM, Untiedt C, Rubio-Bollinger G, Segers RC, van Ruitenbeek JM (2003) Phys Rev Lett 91:76805

    Article  CAS  Google Scholar 

  66. Landauer R (1957) Ibm J Res Dev 1:223

    Article  Google Scholar 

  67. Landauer R (1970) Philos Mag 21:863

    Article  CAS  Google Scholar 

  68. Agraït N, Untiedt C, Rubio-Bollinger G, Vieira S (2002) Chem Phys 281:231

    Article  Google Scholar 

  69. Ludoph B, Devoret MH, Esteve D, Urbina C, van Ruitenbeek JM (1999) Phys Rev Lett 82:1530

    Article  CAS  Google Scholar 

  70. Untiedt C, Bollinger GR, Vieira S, Agraït N (2000) Phys Rev B 62:9962

    Article  CAS  Google Scholar 

  71. Yanson IK (1974) Zhur Eksper Teoret Fiziki 66:1035

    CAS  Google Scholar 

  72. Khotkevich AV, Yanson IK (1995) Atlas of point contact spectra of electron-phonon interactions in metals. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  73. Pfeiffer O, Nony L, Bennewitz R, Baratoff A, Meyer E (2004) Nanotechnology 15:S101

    Article  CAS  Google Scholar 

  74. Stalder A, Durig U (1996) Appl Phys Lett 68:637

    Article  CAS  Google Scholar 

  75. Untiedt C, Caturla MJ, Calvo MR, Palacios JJ, Segers RC, van Ruitenbeek JM (2007) Phys Rev Lett 98:206801

    Article  CAS  Google Scholar 

  76. Halbritter A, Csonka S, Mihaly G, Jurdik E, Kolesnychenko OY, Shklyarevskii OI, Speller S, van Kempen H (2003) Phys Rev B 68

    Google Scholar 

  77. Chen CJ (1991) J Phys-Condens Mat 3:1227

    Article  Google Scholar 

  78. Rose JH, Smith JR, Ferrante J (1983) Phys Rev B 28:1835

    Article  CAS  Google Scholar 

  79. Untiedt C, Yanson AI, Grande R, Rubio-Bollinger G, Agraït N, Vieira S, van Ruitenbeek JM (2002) Phys Rev B 66:85418

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rubio-Bollinger, G., Riquelme, J., Vieira, S., Agraït, N. (2009). Mechanical Properties of Metallic Nanocontacts. In: Bhushan, B., Fuchs, H. (eds) Applied Scanning Probe Methods XII. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85039-7_6

Download citation

Publish with us

Policies and ethics