Skip to main content

Contact Resonance Force Microscopy Techniques for Nanomechanical Measurements

  • Chapter
Book cover Applied Scanning Probe Methods XI

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Contact resonance force microscopy (CR-FM) methods such as atomic force acoustic microscopy show great promise as tools for nanoscale materials research. However, accurate and reliable CR-FM measurements require the simultaneous optimization of a large number of experimental conditions. Among these variables are cantilever spring constant, applied static load, reference material, and resonant mode (mode type and order). In addition, results depend on the models used for data analysis and interpretation (e.g., choice of contact-mechanics model). All of these parameters are linked in numerous ways that are not straighforward to classify. In this chapter, we present a “user’s guide” to quantitative measurements of nanomechanical properties with CR-FM methods. The discussion emphasizes the experimental methods and their practical implementation, providing a snapshot of the current state of the art. We discuss the basic physical principles involved and show how they can be used to make informed choices about experimental parameters and operating conditions. Experimental data and the results of theoretical models are provided as specific examples of the abstract concepts. Ideas for future work are also discussed, including ways to simplify the measurement process or improve measurement accuracy. The objective is not only to enable readers to perform their own CR-FM measurements, but also to optimize experimental conditions for a given material system. By gaining a better understanding of the underlying measurement principles, more researchers will be encouraged to further extend the technique and use it for an ever-wider range of applications for the nanoscale characterization of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. http://www.nano.gov/NNI_07Budget.pdf (accessed August 2008)

  2. Oliver WC, Pharr GM (1992) J Mater Res 7:1564

    Article  CAS  Google Scholar 

  3. Syed Asif SA, Wahl KJ, Colton RJ, Warren OL (2001) J Appl Phys 90:1192

    Article  CAS  Google Scholar 

  4. Li X, Bhushan B (2002) Mater Charact 48:11

    Article  CAS  Google Scholar 

  5. Every AG (2002) Meas Sci Technol 13:R21

    Article  CAS  Google Scholar 

  6. Ogi H, Tian J, Tada T, Hirao M (2003) Appl Phys Lett 83:464

    Article  CAS  Google Scholar 

  7. Cretin B, Sthal F (1993) Appl Phys Lett 62:829

    Article  Google Scholar 

  8. Kraft O, Volkert CA (2001) Adv Engng Mater 3:99

    Article  CAS  Google Scholar 

  9. Binning G, Quate CF, Gerber Ch (1986) Phys Rev Lett 56:930

    Article  Google Scholar 

  10. Maivald P, Butt HJ, Gould SAC, Prater CB, Drake B, Gurley JA, Elings VB, Hansma PK (1991) Nanotechnology 2:103

    Article  Google Scholar 

  11. Burnham NA, Kulik AJ, Gremaud G, Gallo PJ, Oulevey F (1996) J Vac Sci Technol B 14:794

    Article  CAS  Google Scholar 

  12. Troyon M, Wang Z, Pastre D, Lei HN, Hazotte A (1997) Nanotechnology 8:163

    Article  CAS  Google Scholar 

  13. Rosa-Zeiser A, Weilandt E, Hild S, Marti O (1997) Meas Sci Technol 8:1333

    Article  CAS  Google Scholar 

  14. Cappella B, Dietler G (1999) Surface Sci Repts 34:1

    Article  CAS  Google Scholar 

  15. Zhong Q, Inniss D, Kjoller K, Elings VB (1993) Surface Sci 290:L688

    Article  CAS  Google Scholar 

  16. Yamanaka K, Ogiso H, Kolosov OV (1994) Appl Phys Lett 64:178

    Article  CAS  Google Scholar 

  17. Huey BD (2007) Annu Rev Mater Res (2007) 37:351

    Article  CAS  Google Scholar 

  18. Cuberes MT, Assender HE, Briggs GAD, Kolosov OV (2000) J Phys D: Appl Phys33:2347

    Article  CAS  Google Scholar 

  19. Yamanaka K, Nakano S (1996) Jpn J Appl Phys 35:3787

    Article  CAS  Google Scholar 

  20. Rabe U, Arnold W (1994) Appl Phys Lett 64:1493

    Article  Google Scholar 

  21. Dinelli F, Castell MR, Ritchie DA, Mason NJ, Briggs GAD, Kolosov OV (2000) Phil Mag A 80:2299

    Article  CAS  Google Scholar 

  22. Rabe U (2006) Atomic force acoustic microscopy. In: Bushan B, Fuchs H (eds) Applied scanning probe methods, vol II. Springer, Berlin Heidelberg New York, p 37

    Chapter  Google Scholar 

  23. Rabe U, Hirsekorn S, Reinstädtler M, Sulzbach T, Lehrer C, Arnold W (2007) Nanotechnology 18:044008

    Article  CAS  Google Scholar 

  24. Hurley DC, Shen K, Jennett NM, Turner JA (2003) J Appl Phys 94:2347

    Article  CAS  Google Scholar 

  25. Commercial equipment and materials are identified only in order to adequately specify certain procedures. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

    Google Scholar 

  26. Zheng Y, Geer RE, Dovidenko K, Kopycinska-Müller M, Hurley DC (2006) J Appl Phys 100:124308

    Article  CAS  Google Scholar 

  27. Papadakis EP (1990) The measurement of ultrasonic velocity. In: Thurston RN, Pierce AD (eds) Physical Acoustics, vol XIX. Academic Press, San Diego, p 81

    Google Scholar 

  28. Oliver WC, Pharr GM (2004) J Mater Res 19:3

    Article  CAS  Google Scholar 

  29. Rabe U, Amelio S, Kopycinska M, Hirsekorn S, Kempf M, Göken M, Arnold W (2002) Surf Interf Anal 33:65

    Article  CAS  Google Scholar 

  30. Stan G, Price W (2006) Rev Sci Instr 77:103707

    Article  CAS  Google Scholar 

  31. Rabe U, Janser K, Arnold W (1996) Rev Sci Instr 67:3281

    Article  CAS  Google Scholar 

  32. Turner JA, Hirsekorn S, Rabe U, Arnold W (1997) J Appl Phys 82:966

    Article  CAS  Google Scholar 

  33. http://em-jaturner.unl.edu/AFMcalcs.htm (accessed August 2008)

  34. Hurley DC, Turner JA (2007) J Appl Phys 102:033509

    Article  CAS  Google Scholar 

  35. Wright OB, Nishiguchi N (1997) Appl Phys Lett 71:626

    Article  CAS  Google Scholar 

  36. Rabe U, Turner J, Arnold W (1998) Appl Phys A 66:S277

    Google Scholar 

  37. Hurley DC, Turner JA (2004) J Appl Phys 95:2403

    Article  CAS  Google Scholar 

  38. Hurley DC, Kopycinska-Müller M, Julthongpiput D, Fasolka MJ (2006) Appl Surf Sci 253:1274

    Article  CAS  Google Scholar 

  39. Johnson KL (1985) Contact Mechanics. Cambridge University Press, Cambridge UK

    Google Scholar 

  40. Kopycinska-Müller M, Geiss RH, Hurley DC (2006) Ultramicroscopy 106:466

    Article  CAS  Google Scholar 

  41. Langlois ED, Shaw GA, Kramar JA, Pratt JR, Hurley DC (2007) Rev Sci Instr 78:093705

    Article  CAS  Google Scholar 

  42. Hurley DC, Turner JA, Wiehn JS, Rice P (2002) In: Meyendorf N, Baaklini GY, Michel B (eds) Proc of the SPIE 4703. SPIE Publishers, Bellingham WA, p 65

    Google Scholar 

  43. Rabe U, Kopycinska M, Hirsekorn S, Muñoz Saldaña J, Schneider GA, Arnold W (2002) J Phys D: Appl Phys 35:2621

    Article  CAS  Google Scholar 

  44. Prasad M, Kopycinska M, Rabe U, Arnold W (2002) Geophys Res Lett 29:13–1

    Article  Google Scholar 

  45. Amelio S, Goldade AV, Rabe U, Scherer V, Bhusan B, Arnold W (2001) Thin Solid Films 392:75

    Article  CAS  Google Scholar 

  46. Passeri D, Bettucci A, Germano M, Rossi M, Alippi A, Sessa V, Fiori A, Tamburri E, Terranova ML (2006) Appl Phys Lett 88:121910

    Article  CAS  Google Scholar 

  47. Preghnella M, Pegoretti A, Migliaresi C (2006) Polymer Testing 25:443

    Article  CAS  Google Scholar 

  48. Kester E, Rabe R, Presmanes L, Tailhades Ph, Arnold W (2000) J Phys Chem Solids 61:1275

    Article  CAS  Google Scholar 

  49. Passeri D, Bettucci A, Germano M, Rossi M, Alippi A, Orlanducci S, Terranova ML, Ciavarella M (2005) Rev Sci Instr 76:093904

    Article  CAS  Google Scholar 

  50. Tsuji T, Saito S, Fukuda K, Yamanaka K, Ogiso H, Akedo J, Kawakami K (2005) Appl Phys Lett 87:071909

    Article  CAS  Google Scholar 

  51. Hurley DC, Kopycinska-Müller M, Kos AB, Geiss RH (2005) Meas Sci Technol 16:2167

    Article  CAS  Google Scholar 

  52. Hurley DC, Geiss RH, Jennett NM, Kopycinska-Müller M, Maxwell AS, Müller J, Read DT, Wright JE (2005) J Mater Res 20:1186

    Article  CAS  Google Scholar 

  53. Kopycinska-Müller M, Geiss RH, Müller J, Hurley DC (2005) Nanotechnology 16:703

    Article  CAS  Google Scholar 

  54. Passeri D, Rossi M, Alippi A, Bettucci A, Manno D, Serra A, Filippo E, Lucci M, Davoli I (2008) Superlattices and Microstructures, in press, doi:10.1016/j.spmi.2007.10.004

    Google Scholar 

  55. Dupas E, Gremaud G, Kulik A, Loubet J-L (2001) Rev Sci Instr 72:3891

    Article  CAS  Google Scholar 

  56. Stan G, Ciobanu CV, Parthangal PM, Cook RF (2007) Nano Lett 7:3691

    Article  CAS  Google Scholar 

  57. Oulevey F, Gremaud G, Mari D, Kulik AJ, Burnham NA, Benoit W (2000) Scripta mater 42:31

    CAS  Google Scholar 

  58. Crozier KB, Yaralioglu GG, Degertkin FL, Adams JD, Minne SC, Quate CF (2000) Appl Phys Lett 76:1950

    Article  CAS  Google Scholar 

  59. Cuenot S, Frétigny C, Demoustier-Champagne S, Nysten B (2004) Phys Rev B 69:165410

    Article  CAS  Google Scholar 

  60. Mangamma G, Mohan Kant K, Rao MSR, Kalavathy S, Kamruddin M, Dash S, Tyagi AK (2007) J Nanosci Nanotechnol 7:2176

    Article  CAS  Google Scholar 

  61. Reinstädtler M, Rabe U, Scherer V, Hartmann U, Goldade A, Bhushan B, Arnold W (2003) J Appl Phys 82:2604

    Google Scholar 

  62. Drobek T, Stark RW, Gräber M, Heckl WM (1999) New J Phys 1:15

    Article  Google Scholar 

  63. Kawagishi T, Kato A, Hoshi Y, Kawakatsu H (2002) Ultramicroscopy 91:37

    Article  CAS  Google Scholar 

  64. Caron A, Rabe U, Reinstädtler M, Turner JA, Arnold W (2004) Appl Phys Lett 85:6398

    Article  CAS  Google Scholar 

  65. Song Y, Bhushan B (2005) J Appl Phys 97:083533

    Article  CAS  Google Scholar 

  66. Scherer V, Reinstädtler M, Arnold W (2004) Atomic force microscopy with lateral modulation. In: Bhushan B, Fuchs H, Hosaka S (eds) Applied scanning probe methods, vol I. Springer, Berlin Heidelberg New York, p 75

    Google Scholar 

  67. Reinstädtler M, Kasai T, Rabe U, Bhushan B, Arnold W (2005) J Phys D: Appl Phys 38:R269

    Article  CAS  Google Scholar 

  68. Mazeran PE, Loubet JL (1997) Trib Lett 3:125

    Article  CAS  Google Scholar 

  69. Rabe U, Amelio S, Kester E, Scherer V, Hirsekorn S, Arnold W (2000) Ultrasonics 38:430

    Article  CAS  Google Scholar 

  70. Turner JA, Wiehn JS (2001) Nanotechnology 12:322

    Article  Google Scholar 

  71. Chang WJ (2002) Nanotechnology 13:510

    Article  CAS  Google Scholar 

  72. Wu TS, Chang WJ, Hsu JC (2004) Microelectronic Engineering 71:15

    Article  CAS  Google Scholar 

  73. Sthal F, Cretin B (1995) In: Jones JP (ed) Acoustical imaging, vol 21. Plenum Press, New York, p 305

    Google Scholar 

  74. Yaralioglu GG, Degertekin FL, Crozier KB, Quate CF (2000) J Appl Phys 87:7491

    Article  CAS  Google Scholar 

  75. Yamanaka K, Nakano S (1998) Appl Phys A 66:S313

    Article  CAS  Google Scholar 

  76. Olson S, Sankaran B, Altemus B, Geer R, Castracane J, Xu B (2006) J Microlith Microfab Microsyst 5:021197

    Article  CAS  Google Scholar 

  77. Burnham NA, Gremaud G, Kulik AJ, Gallo PJ, Oulevey F (1996) J Vac Sci Technol B 14:1308

    Article  CAS  Google Scholar 

  78. Stark RW (2004) Rev Sci Instr 75:5053

    Article  CAS  Google Scholar 

  79. Schäffer TE, Fuchs H (1995) J Appl Phys 97:083524

    Article  CAS  Google Scholar 

  80. Yamanaka K, Tsuji T, Noguchi A, Koike T, Mihara T (2000) Rev Sci Instr 71:2403

    Article  CAS  Google Scholar 

  81. Rabe U (2007) private communication

    Google Scholar 

  82. Rabe U, Scherer V, Hirsekorn S, Arnold W (1997) J Vac Sci Technol B 15:1506

    Article  CAS  Google Scholar 

  83. Yamanaka K, Maruyama Y, Tsuji T, Nakamoto K (2001) Appl Phys Lett 78:1939

    Article  CAS  Google Scholar 

  84. Kobayashi K, Yamada H, Matsushige K (2002) Surf Interf Anal 33:89

    Article  CAS  Google Scholar 

  85. Efimov E, Saunin SA (2002) In: Proc of the scanning probe microscopy conference 2002, p 79. Available at http://ntmdt.com/publications? year = 2002 (accessed August 2008)

  86. Hurley DC, Kos AB, Rice P (2005) In: Kalinin SV, Goldberg B, Eng LM, Huey BD (eds) Proc of the MRS 838E. Mater Res Soc, Warrendale PA, p O8.2.1

    Google Scholar 

  87. Kos AB and Hurley DC (2008) Meas Sci Technol 19:015504

    Article  CAS  Google Scholar 

  88. Tsuji T, Yamanaka K (2001) Nanotechnology 12:301

    Article  CAS  Google Scholar 

  89. Tsuji T, Irihama H, Yamanaka K (2002) Jpn J Appl Phys 41:832

    Article  CAS  Google Scholar 

  90. Striegler A, Pathuri N, Köhler B, Bendjus B (2007) In: Thompson DO, Chimenti DE (eds) AIP Conference Proceedings 894, Rev Prog QNDE 2006. AIP Publishing, Melville NY, p 1572

    Google Scholar 

  91. McGuigan AP, Huey BD, Briggs GAD, Kolosov OV, Tsukahara Y, Yanaka M (2002) Appl Phys Lett 80:1180

    Article  CAS  Google Scholar 

  92. Hurley DC, Kopycinska-Müller M, Langlois ED, Kos AB, Barbosa N, (2006) Appl Phys Lett 89:021911

    Article  CAS  Google Scholar 

  93. Sarioglu AF, Atalar A, Degertekin FL (2004) Appl Phys Lett 84:5368

    Article  CAS  Google Scholar 

  94. Reinstädtler M, Rabe U, Scherer V, Turner JA, Arnold W (2003) Surf Sci 532–535:1152

    Article  CAS  Google Scholar 

  95. Adams JD, York D, Whisman N (2004) Rev Sci Instr 75:2903

    Article  CAS  Google Scholar 

  96. Sahin O, Yaralioglu G, Grow R, Zappe SF, Atalar A, Quate C, Solgaard O (2004) Sens Act A 114:183

    Article  CAS  Google Scholar 

  97. Sadewasser S, Villanueva G, Plaza JA (2006) Rev Sci Instr 77:073703

    Article  CAS  Google Scholar 

  98. Mendels DA, Lowe M, Cuenat A, Cain MG, Vallejo E, Ellis D, Mendels F (2006) J Micromech Microeng 16:1720

    Article  Google Scholar 

  99. Arinero R, Lévêque G (2003) Rev Sci Instr 74:104

    Article  CAS  Google Scholar 

  100. Shen K, Hurley DC, Turner JA (2004) Nanotechnology 15:1582

    Article  CAS  Google Scholar 

  101. Espinoza Beltrán FJ, Scholz T, Schneider GA, Muñoz-Saldaña J, Rabe U, Arnold W (2007) In: Meyer E, Hegner M, Gerber C, Güntherodt H-J (eds) J Phys Conference Series 61, Proc ICN& T 2006. IOP Publishing, Bristol UK, p 293

    Google Scholar 

  102. Villarrubia JS (1996) J Vac Sci Technol B 14:1518

    Article  CAS  Google Scholar 

  103. Villarrubia JS (1997) J Res Natl Inst Stand Technol 102:425

    Google Scholar 

  104. Itoh H, Fujimoto T, Ichimura S (2006) Rev Sci Instr 77:103704

    Article  CAS  Google Scholar 

  105. Muraoka M (2005), Nanotechnology 16:542

    Article  CAS  Google Scholar 

  106. Schwarz UD, Zwörner O, Köster P, Wiesendanger R (1997) J Vac Sci Technol B 15:1527

    Article  CAS  Google Scholar 

  107. Jesse S, Kalinin SV, Proksch R, Baddorf AP, Rodriguez BJ (2007) Nanotechnology 18:435503

    Article  Google Scholar 

  108. Humphris ADL, Miles MJ, Hobbs JK (2005) Appl Phys Lett 86:034106

    Article  CAS  Google Scholar 

  109. Hansma PK, Schitter G, Fantner GE, Prater C (2006) Science 314:601

    Article  CAS  Google Scholar 

  110. Batog GS, Baturin AS, Bormashov VS, Sheshin EP (2006) Tech Phys 51:1084

    Article  CAS  Google Scholar 

  111. Schwarz UD (2003) J Coll Interf Sci 261:99

    Article  CAS  Google Scholar 

  112. Ebert A, Tittmann BR, Du J, Scheuchenzuber W (2006) Ultrasound Med Biol 32:1687

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hurley, D.C. (2009). Contact Resonance Force Microscopy Techniques for Nanomechanical Measurements. In: Applied Scanning Probe Methods XI. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85037-3_5

Download citation

Publish with us

Policies and ethics