Skip to main content

Contact Atomic Force Microscopy: A Powerful Tool in Adhesion Science

  • Chapter
Applied Scanning Probe Methods XI

Part of the book series: NanoScience and Technology ((NANO))

  • 1209 Accesses

Abstract

Adhesion between two objects appears confusing or ambiguous, because the term is employed generally for two things: first, the formation of the interface between a pair of materials, i.e. the establishment of interfacial bonds through forces at the interface which cause materials to attract one another and second, the breaking stress or energy required to break the formed assembly. One can easily see that both interfacial forces and mechanical properties of adherents in the vicinity of the interface and in the bulk contribute to the global mechanical response of the assembly. Such a fundamental issue reflects a paradox that has stimulated intensive research for decades: what is the interplay between surface forces, surface rheology, and adhesive strength? In recent years, Atomic Force Microscopy (AFM) has become a powerful tool, sensitive enough, to detect small surface forces and to study adhesion at the nanoscale. Precise analysis of adhesion forces and surface mechanical properties of model polymer surfaces can be achieved with such a nanometer probe. The purpose and scope of this chapter is to highlight the experimental methods that enable one to dissociate the different contributions (chemical and mechanical) included in an AFM force-distance curve in order to establish quantitative relationships between interfacial tip–polymer interactions and surface viscoelastic properties of a polymer surface. New relationships are proposed that provide a complete understanding of how the adhesion separation energy depends on both surface chemistry and rheological behavior of the surface and thus at a local scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dubourg F, Aimé JP (2000) Surface Sci 466:137

    Article  CAS  Google Scholar 

  2. Noel O, Awada H, Castelein G, Brogly M, Schultz J (2006) J Adhesion 82:649

    Article  CAS  Google Scholar 

  3. Brogly M, Noel O, Awada H, Castelein G, Schultz J (2006) Comptes Rendus de l’Académie des Sciences, Chimie 9:99

    Article  CAS  Google Scholar 

  4. Gauthier S, Aimé JP, Bouhacina T, Attias AJ, Desbat B (1996) Langmuir 12:5126

    Article  CAS  Google Scholar 

  5. Paiva A, Sheller N, Forster MD, Crosby AJ, Shull KR (2000) Macromolecules 33:1878

    Article  CAS  Google Scholar 

  6. Bushan B, Sundararajan S (1998) Acta Mater 46:3793

    Article  Google Scholar 

  7. Beake BD, Leggett GJ, Shipway PH (1999) Surface Interface Anal 27:1084

    Article  CAS  Google Scholar 

  8. Tomasetti E, Legras R, Nysten B (1998) Nanotechnologies 9:305

    Article  CAS  Google Scholar 

  9. Israelachvili J (1991) Intermolecular and surface forces, 2nd ed. Academic Press, New York

    Google Scholar 

  10. Gent AN, Schultz J (1972) J Adhesion 3:281

    Article  CAS  Google Scholar 

  11. Gutmann V (1977) The donor-acceptor approach to molecular interaction. Plenum Press, New York

    Google Scholar 

  12. Drago RS, Wayland BJ (1965) Am Chem Soc 87:3571

    Article  CAS  Google Scholar 

  13. Cain SR (1991) In: Mittal KL, Anderson H Jr (eds) Acid-base interactions: relevance to adhesion science and technology. VSP, Zeist

    Google Scholar 

  14. Fowkes FM (1987) J Adhesion Sci Technol 1:7

    Article  CAS  Google Scholar 

  15. Brogly M, Nardin M, Schultz J (1996) J Adhesion 58:263

    Article  CAS  Google Scholar 

  16. Burns AR, Houston JE, Carpick RW, Michalske TA (1999) Langmuir 15:2922

    Article  CAS  Google Scholar 

  17. Jones R, Pollock HM, Cleaver JAS, Hodges CS (2002) Langmuir 18:8045

    Article  CAS  Google Scholar 

  18. Rabinovich YI, Adler J, Ata A, Singh RK, Moudgil BM (2000) J Colloid Interface Sci. 232:10

    Article  CAS  Google Scholar 

  19. Unertl WN (2000) J Adhesion 74:195

    Article  CAS  Google Scholar 

  20. Basire C (1998) Ph. D. Thesis, Université Paris VI, Paris, France

    Google Scholar 

  21. Basire C, Fretigny C (2001) Tribol Lett 10:189

    Article  CAS  Google Scholar 

  22. Cuenot S, Duwez AS, Martin P, Nysten B (2002) Chimie Nouvelle 79:89

    Google Scholar 

  23. Cuenot S (2003) Ph. D. Thesis, Université Catholique de Louvain, Louvain, Belgium

    Google Scholar 

  24. Aime JP, Boisgard R, Nony L, Couturier G (2001) J Chem Phys 114:4945

    Article  CAS  Google Scholar 

  25. Boisgard R, Aime JP, Couturier G (2002) Surface Sci 511:171

    Article  CAS  Google Scholar 

  26. Dubourg F (2002) Ph. D. Thesis, Université de Bordeaux I, Bordeaux, France

    Google Scholar 

  27. Noel O, Brogly M, Castellein G, Schultz J (2004) Langmuir 20:2707

    Article  CAS  Google Scholar 

  28. Albrecht TR, Akamine S, Carver, TE.,Quate CF (1990) J Vac Sci Technol 8:3386

    Article  CAS  Google Scholar 

  29. Sader JE, White LR (1993) J Appl Phys 74:1

    Article  CAS  Google Scholar 

  30. Hutter JL, Bechhoefer J (1993) Rev Sci Instrum 64:1868

    Article  CAS  Google Scholar 

  31. Sader JE, Larson I, Mulvaney P, White LR (1995) Rev Sci Instrum 66:3789

    Article  CAS  Google Scholar 

  32. Torrii A, Sasaki M, Hane K, Okuma S (1996) Meas Sci Technol 7:179

    Article  Google Scholar 

  33. Noel O (2003) Ph. D. Thesis, Université de Haute Alsace, Mulhouse, France

    Google Scholar 

  34. Chaudhury MK, Whitesides GM (1992) Science 255:1230

    Article  CAS  Google Scholar 

  35. Noel O, Brogly M, Castelein G, Schultz J (2004) Eur Polym J 40:965

    Article  CAS  Google Scholar 

  36. Awada H, Castelein G, Brogly M (2005) Surface Interface Anal 37:755

    Article  CAS  Google Scholar 

  37. Ruhe J, Novotny VJ, Kanazawa KK, Clarke T, Street GB (1993) Langmuir 9:2383

    Article  Google Scholar 

  38. Wasserman SR, Whitesides GM, Tidswell IM, Ocko BM, Pershan PS, Axe JD (1989) J Am Chem 111:5852

    Article  CAS  Google Scholar 

  39. Allara DL, Parikh AN, Rondelez F (1995) Langmuir 11:2357

    Article  CAS  Google Scholar 

  40. Sugawara Y, Ohta M, Konishi T, Morita S, Suzuki M, Enomoto Y (1993) Wear 168:13

    Article  CAS  Google Scholar 

  41. Derjaguin BV, Muller VM, Toporov YP (1975) J Colloid Interface Sci 53:314

    Article  Google Scholar 

  42. Xiao X, Oian L (2000) Langmuir 16:8153

    Article  CAS  Google Scholar 

  43. Sedin DL, Rowlen KL (2000) Analytical Chem 72:2183

    Article  CAS  Google Scholar 

  44. He M, Szuchmacher Blum A, Aston DE, Buenviaje C, Overney RM, Luginbuhl R (2001) J Chem Phys 114:1355

    Article  CAS  Google Scholar 

  45. Zhang L, Li L, Chan S, Jiang S (2002) Langmuir 18:5448

    Article  CAS  Google Scholar 

  46. Hu J, Xiao XD, Ogletree DF, Salmeron M (1995) Surface Sci 344:221

    Article  CAS  Google Scholar 

  47. Bruinsma R (1990) Macromolecules 23:276

    Article  CAS  Google Scholar 

  48. de Gennes PG (1985) Rev Mod Phys 57:827

    Article  Google Scholar 

  49. Riedo E, Levy F, Brune H (2002) Phys Rev Lett 88:185505

    Article  Google Scholar 

  50. Weeks BL, Vaughn MW, DeYoreo JJ (2005) Langmuir 21:8096

    Article  CAS  Google Scholar 

  51. Flory PJ (1944) Chem Rev 35:51

    Article  CAS  Google Scholar 

  52. Aime JP, Michel D, Boisgard R, Nony L (1999) Phys Rev B 59:2407

    Article  CAS  Google Scholar 

  53. Pethica JB, Sutton AP (1988) J Vac Sci Technol A 6:2490

    Article  CAS  Google Scholar 

  54. Johnson KL, Kendall K, Roberts AD (1971) Proc Royal Soc A324:301

    Article  CAS  Google Scholar 

  55. Papirer E, Balard H, Sidqi M (1993) J Colloid Interface Sci 159:238

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brogly, M., Awada, H., Noel, O. (2009). Contact Atomic Force Microscopy: A Powerful Tool in Adhesion Science. In: Applied Scanning Probe Methods XI. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85037-3_4

Download citation

Publish with us

Policies and ethics