Skip to main content

Reorganized Motor Control Due to Muscle Pain

  • Chapter
  • First Online:

Abstract

It has become evident that muscle pain interferes with motor control strategies, and different patterns of interaction are reported during rest, static contractions, and dynamic conditions. A reorganized motor control system with functional adaptations of the muscle coordination and strategies is a key factor in musculoskeletal pain conditions; its relevance in the transition from acute pain to chronic pain is most likely underestimated. The interaction between muscle pain and motor control depends on the specific motor task. Muscle pain causes no increase in muscle activity assessed by electromyography at rest, reduces maximal voluntary contraction (MVC) levels, and shortens endurance time during submaximal contractions. Moreover, muscle pain causes an adaptive change in the coordination during dynamic exercises. In some cases, increased muscle activity reflecting reorganized muscle coordination and strategy is also a component of the functional adaptation to muscle pain. In general, the “vicious cycle” hypothesis is not supported by these findings. More relevant is an adaptive model predicting reduced agonistic muscle activity eventually advanced by changed antagonistic muscle activity. The quantitative motor control assessment procedures provide additional clinical information, and give further support for optimizing prevention procedures and treatment regimes and for musculoskeletal pain.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahern DK, Follick MJ, Council JR, Laser-Wolston N, Litchman H (1988) Comparison of lumbar paravertebral EMG patterns in chronic low back pain patients and non-patient controls. Pain 34:153–160

    Article  PubMed  CAS  Google Scholar 

  • Arendt-Nielsen L, Graven-Nielsen T, Svarrer H, Svensson P (1996) The influence of low back pain on muscle activity and coordination during gait: a clinical and experimental study. Pain 64:231–240

    Article  PubMed  CAS  Google Scholar 

  • Ashton-Miller JA, McGlashen KM, Herzenberg JE, Stohler CS (1990) Cervical muscle myoelectric response to acute experimental sternocleidomastoid pain. Spine 15:1006–1012

    Article  PubMed  CAS  Google Scholar 

  • Bäckman E, Bengtsson A, Bengtsson M, Lennmarken C, Henriksson KG (1988) Skeletal muscle function in primary fibromyalgia. Effect of regional sympathetic blockade with guanethidine. Acta Neurol Scand 77:187–191

    Article  PubMed  Google Scholar 

  • Bajaj P, Madeleine P, Sjogaard G, Arendt-Nielsen L (2002) Assessment of postexercise muscle soreness by electromyography and mechanomyography. J Pain 3:126–136

    Article  PubMed  Google Scholar 

  • Bengtsson A, Bäckman E, Lindblom B, Skogh T (1994) Long term follow-up of fibromyalgia patients: clinical symptoms, muscular function, laboratory test — an eight year comparison study. J Musculoskeletal Pain 2:67–80

    Article  Google Scholar 

  • Birznieks I, Burton AR, Macefield VG (2008) The effects of experimental muscle and skin pain on the static stretch sensitivity of human muscle spindles in relaxed leg muscles. J Physiol 586:2713–2723

    Article  PubMed  CAS  Google Scholar 

  • Bobbert MF, Hollander AP, Huijing PA (1986) Factors in delayed onset muscular soreness of man. Med Sci Sports Exerc 18:75–81

    PubMed  CAS  Google Scholar 

  • Bodéré C, Tea SH, Giroux-Metges MA, Woda A (2005) Activity of masticatory muscles in subjects with different orofacial pain conditions. Pain 116:33–41

    Article  PubMed  Google Scholar 

  • Bogduk N, Munro RR (1979) Experimental low back pain, referred pain and muscle spasm. J Anat 128:661

    Google Scholar 

  • Cairns BE, Svensson P, Wang K, Hupfeld S, Graven-Nielsen T, Sessle BJ, Berde CB, Arendt-Nielsen L (2003) Activation of peripheral NMDA receptors contributes to human pain and rat afferent discharges evoked by injection of glutamate into the masseter muscle. J Neurophysiol 90:2098–2105

    Article  PubMed  CAS  Google Scholar 

  • Ciubotariu A, Arendt-Nielsen L, Graven-Nielsen T (2004) The influence of muscle pain and fatigue on the activity of synergistic muscles of the leg. Eur J Appl Physiol 91:604–614

    Article  PubMed  Google Scholar 

  • Ciubotariu A, Arendt-Nielsen L, Graven-Nielsen T (2007) Localized muscle pain causes prolonged recovery after fatiguing isometric contractions. Exp Brain Res 181:147–158

    Article  PubMed  Google Scholar 

  • Clark GT, Beemsterboer PL, Jacobson R (1984) The effect of sustained submaximal clenching on maximum bite force in myofascial pain dysfunction patients. J Oral Rehabil 11:387–391

    Article  PubMed  CAS  Google Scholar 

  • Cohen MJ (1978) Psychophysiological studies of headache: Is there similarity between migraine and muscle contraction headaches? Headache 18:189–196

    Article  PubMed  CAS  Google Scholar 

  • Collins GA, Cohen MJ, Nailboff BD, Schandler SL (1982) Comparative analysis of paraspinal and frontalis EMG, heart rate and skin conductance in chronic low back pain patients and normals to various postures and stress. Scand J Rehabil Med 14:39–46

    PubMed  CAS  Google Scholar 

  • Dannecker EA, Koltyn KF, Riley JL III, Robinson ME (2003) Sex differences in delayed onset muscle soreness. J Sports Med Phys Fitness 43:78–84

    PubMed  CAS  Google Scholar 

  • deVries HA (1966) Quantitative electromyographic investigation of the spasm theory of muscle pain. Am J Phys Med 45:119–134

    CAS  Google Scholar 

  • Elert JE, Dahlqvist SBR, Henriksson-Larsén K, Gerdle B (1989) Increased EMG activity during short pauses in patients with primary fibromyalgia. Scand J Rheumatol 18:321–323

    Article  PubMed  CAS  Google Scholar 

  • Elert JE, Dahlqvist SR, Almay B, Eisemann M (1993) Muscle endurance, muscle tension and personality traits in patients with muscle or joint pain — a pilot study. J Rheumatol 20:1550–1556

    PubMed  CAS  Google Scholar 

  • Ervilha UF, Arendt-Nielsen L, Duarte M, Graven-Nielsen T (2004a) Effect of load level and muscle pain intensity on the motor control of elbow-flexion movements. Eur J Appl Physiol 92:168–175

    Article  PubMed  Google Scholar 

  • Ervilha UF, Arendt-Nielsen L, Duarte M, Graven-Nielsen T (2004b) The effect of muscle pain on elbow flexion and coactivation tasks. Exp Brain Res 156:174–182

    Article  PubMed  Google Scholar 

  • Falla D, Farina D, Dahl MK, Graven-Nielsen T (2007a) Muscle pain induces task-dependent changes in cervical agonist/antagonist activity. J Appl Physiol 102:601–609

    Article  PubMed  CAS  Google Scholar 

  • Falla D, Farina D, Graven-Nielsen T (2007b) Experimental muscle pain results in reorganization of coordination among trapezius muscle subdivisions during repetitive shoulder flexion. Exp Brain Res 178:385–393

    Article  PubMed  Google Scholar 

  • Farina D, Arendt-Nielsen L, Merletti R, Graven-Nielsen T (2004) Effect of experimental muscle pain on motor unit firing rate and conduction velocity. J Neurophysiol 91:1250–1259

    Article  PubMed  Google Scholar 

  • Farina D, Arendt-Nielsen L, Graven-Nielsen T (2005a) Experimental muscle pain decreases voluntary EMG activity but does not affect the muscle potential evoked by transcutaneous electrical stimulation. Clin Neurophysiol 116:1558–1565

    Article  PubMed  Google Scholar 

  • Farina D, Arendt-Nielsen L, Graven-Nielsen T (2005b) Experimental muscle pain reduces initial motor unit discharge rates during sustained submaximal contractions. J Appl Physiol 98:999–1005

    Article  PubMed  Google Scholar 

  • Farina D, rendt-Nielsen L, Roatta S, Graven-Nielsen T (2008) The pain-induced decrease in low-threshold motor unit discharge rate is not associated with the amount of increase in spike-triggered average torque. Clin Neurophysiol 119:43–51

    Article  PubMed  Google Scholar 

  • Gay T, Maton B, Rendell J, Majourau A (1994) Characteristics of muscle fatigue in patients with myofascial pain-dysfunction syndrome. Arch Oral Biol 39:847–852

    Article  PubMed  CAS  Google Scholar 

  • Graven-Nielsen T (2006) Fundamentals of muscle pain, referred pain, and deep tissue hyperalgesia. Scand J Rheumatol 35(Suppl 122):1–43

    Article  Google Scholar 

  • Graven-Nielsen T, Svensson P, Arendt-Nielsen L (1997) Effects of experimental muscle pain on muscle activity and co-ordination during static and dynamic motor function. Electroencephalogr Clin Neurophysiol 105:156–164

    Article  PubMed  CAS  Google Scholar 

  • Graven-Nielsen T, Lund H, Arendt-Nielsen L, Danneskiold-Samsøe B, Bliddal H (2002) Inhibition of maximal voluntary contraction force by experimental muscle pain: a centrally mediated mechanism. Muscle Nerve 26:708–712

    Article  PubMed  Google Scholar 

  • Hedayatpour N, Falla D, Arendt-Nielsen L, Farina D (2008) Sensory and electromyographic mapping during delayed-onset muscle soreness. Med Sci Sports Exerc 40:326–334

    Article  PubMed  Google Scholar 

  • Henriksen M, Alkjaer T, Lund H, Simonsen EB, Graven-Nielsen T, Danneskiold-Samsoe B, Bliddal H (2007) Experimental quadriceps muscle pain impairs knee joint control during walking. J Appl Physiol 103:132–139

    Article  PubMed  Google Scholar 

  • Hodges PW, Moseley GL, Gabrielsson A, Gandevia SC (2003) Experimental muscle pain changes feedforward postural responses of the trunk muscles. Exp Brain Res 151:262–271

    Article  PubMed  Google Scholar 

  • Hodges P, Cholewicki J, Coppieters M, MacDonald D (2006) Trunk muscle activity is increased during experimental back pain, but the pattern varies between individuals. International Society for Electrophysiology and Kinesiology, Turin, 2006

    Google Scholar 

  • Hodges PW, Ervilha UF, Graven-Nielsen T (2008) Changes in motor unit firing rate in synergistic muscles cannot explain the maintenance of force during constant force painful contractions. J Pain 9:1169–1174

    Article  PubMed  Google Scholar 

  • Hoheisel U, Unger T, Mense S (2005) Excitatory and modulatory effects of inflammatory cytokines and neurotrophins on mechanosensitive group IV muscle afferents in the rat. Pain 114:168–176

    Article  PubMed  CAS  Google Scholar 

  • Howell JN, Chila AG, Ford G, David D, Gates T (1985) An electromyographic study of elbow motion during postexercise muscle soreness. J Appl Physiol 58:1713–1718

    PubMed  CAS  Google Scholar 

  • Iggo A (1961) Non-myelinated afferent fibers from mammalian skeletal muscle. J Physiol 155:52P–53P

    Google Scholar 

  • James C, Sacco P, Jones DA (1995) Loss of power during fatigue of human leg muscles. J Physiol (London) 484(1):237–246

    CAS  Google Scholar 

  • Johansson H, Sojka P (1991) Pathophysiological mechanisms involved in genesis and spread of muscular tension in occupational muscle pain and in chronic musculoskeletal pain syndromes: A hypothesis. Med Hypotheses 35:196–203

    Article  PubMed  CAS  Google Scholar 

  • Katz R, Pierrot-Deseilligny E (1999) Recurrent inhibition in humans. Prog Neurobiol 57:325–355

    Article  PubMed  CAS  Google Scholar 

  • Kellgren JH (1938) Observations on referred pain arising from muscle. Clin Sci 3:175–190

    Google Scholar 

  • Kroon GW, Naeije M (1991) Recovery of the human biceps electromyogram after heavy eccentric, concentric or isometric exercise. Eur J Appl Physiol Occup Physiol 63:444–448

    Article  PubMed  CAS  Google Scholar 

  • Larsson R, Öberg PÅ, Larsson S-E (1999) Changes of trapezius muscle blood flow and electromyography in chronic neck pain due to trapezius myalgia. Pain 79:45–50

    Article  PubMed  CAS  Google Scholar 

  • Le Pera D, Graven-Nielsen T, Valeriani M, Oliviero A, Di Lazzaro V, Tonali PA, Arendt-Nielsen L (2001) Inhibition of motor system excitability at cortical and spinal level by tonic muscle pain. Clin Neurophysiol 112:1633–1641

    Article  PubMed  Google Scholar 

  • Lewis T (1938) Suggestions relating to the study of somatic pain. Br Med J 1:321–325

    Article  PubMed  CAS  Google Scholar 

  • Lund JP, Stohler CS, Widmer CG (1993) The relationship between pain and muscle activity in fibromyalgia and similar conditions. In: Værøy H, Merskey H (eds) Progress in fibromyalgia and myofascial pain. Elsevier Science, Amsterdam, pp 311–327

    Google Scholar 

  • Madeleine P, Voigt M, Arendt-Nielsen L (1999) Reorganisation of human step initiation during acute experimental muscle pain. Gait Posture 10:240–247

    Article  PubMed  CAS  Google Scholar 

  • Madeleine P, Leclerc F, Arendt-Nielsen L, Ravier P, Farina D (2006) Experimental muscle pain changes the spatial distribution of upper trapezius muscle activity during sustained contraction. Clin Neurophysiol 117:2436–2445

    Article  PubMed  Google Scholar 

  • Martin PG, Weerakkody N, Gandevia SC, Taylor JL (2008) Group III and IV muscle afferents differentially affect the motor cortex and motoneurones in humans. J Physiol 586:1277–1289

    Article  PubMed  CAS  Google Scholar 

  • Masri R, Ro JY, Capra N (2005) The effect of experimental muscle pain on the amplitude and velocity sensitivity of jaw closing muscle spindle afferents. Brain Res 1050:138–147

    Article  PubMed  CAS  Google Scholar 

  • Matre DA, Sinkjær T, Svensson P, Arendt-Nielsen L (1998) Experimental muscle pain increases the human stretch reflex. Pain 75:331–339

    Article  PubMed  CAS  Google Scholar 

  • Nie H, Arendt-Nielsen L, Kawczynski A, Madeleine P (2007) Gender effects on trapezius surface EMG during delayed onset muscle soreness due to eccentric shoulder exercise. J Electromyogr Kinesiol 17:401–409

    Article  PubMed  Google Scholar 

  • O’Connor PJ, Cook DB (2001) Moderate-intensity muscle pain can be produced and sustained during cycle ergometry. Med Sci Sports Exerc 33:1046–1051

    Article  PubMed  Google Scholar 

  • Pearce AJ, Sacco P, Byrnes ML, Thickbroom GW, Mastaglia FL (1998) The effects of eccentric exercise on neuromuscular function of the biceps brachii. J Sci Med Sport 1:236–244

    Article  PubMed  CAS  Google Scholar 

  • Prasartwuth O, Taylor JL, Gandevia SC (2005) Maximal force, voluntary activation and muscle soreness after eccentric damage to human elbow flexor muscles. J Physiol 567:337–348

    Article  PubMed  CAS  Google Scholar 

  • Ro JY, Capra NF (2001) Modulation of jaw muscle spindle afferent activity following intramuscular injections with hypertonic saline. Pain 92:117–127

    Article  PubMed  CAS  Google Scholar 

  • Rossi A, Mazzocchio R, Decchi B (2003) Effect of chemically activated fine muscle afferents on spinal recurrent inhibition in humans. Clin Neurophysiol 114:279–287

    Article  PubMed  CAS  Google Scholar 

  • Schmidt RF, Kniffki K-D, Schomburg ED (1981) Der Einfluss kleinkalibriger Muskelafferenzen auf den Muskeltonus. In: Bauer H, Koella WP, Struppler H (eds) Therapie der spastic. Verlag for angewandte Wissenschaft, München, pp 71–86

    Google Scholar 

  • Schomburg ED, Steffens H (2002) Only minor spinal motor reflex effects from feline group IV muscle nociceptors. Neurosci Res 44:213–223

    Article  PubMed  Google Scholar 

  • Schomburg ED, Steffens H, Kniffki KD (1999) Contribution of group III and IV muscle afferents to multisensorial spinal motor control in cats. Neurosci Res 33:195–206

    Article  PubMed  CAS  Google Scholar 

  • Sessle BJ (2000) Acute and chronic craniofacial pain: brainstem mechanisms of nociceptive transmission and neuroplasticity, and their clinical correlates. Crit Rev Oral Biol Med 11:57–91

    Article  PubMed  CAS  Google Scholar 

  • Sihvonen T, Partanen J, Hänninen O, Soimakallio S (1991) Electric behavior of low back muscles during lumbar pelvic rhythm in low back pain patients and healthy controls. Arch Phys Med Rehabil 72:1080–1087

    PubMed  CAS  Google Scholar 

  • Simons DJ, Day E, Goodell H, Wolff HG (1943) Experimental studies on headache: Muscle of the scalp and neck as sources of pain. Assoc Res Nerv Ment Dis 23:228–244

    Google Scholar 

  • Slater H, Arendt-Nielsen L, Wright A, Graven-Nielsen T (2005) Sensory and motor effects of experimental muscle pain in patients with lateral epicondylalgia and controls with delayed onset muscle soreness. Pain 114:118–130

    Article  PubMed  Google Scholar 

  • Sohn MK, Graven-Nielsen T, Arendt-Nielsen L, Svensson P (2000) Inhibition of motor unit firing during experimental muscle pain in humans. Muscle Nerve 23:1219–1226

    Article  PubMed  CAS  Google Scholar 

  • Sohn MK, Graven-Nielsen T, Arendt-Nielsen L, Svensson P (2004) Effects of experimental muscle pain on mechanical properties of single motor units in human masseter. Clin Neurophysiol 115:76–84

    Article  PubMed  CAS  Google Scholar 

  • Stohler CS, Zhang X, Lund JP (1996) The effect of experimental jaw muscle pain on postural muscle activity. Pain 66:215–221

    Article  PubMed  CAS  Google Scholar 

  • Svendsen O, Edwards CN, Lauritzen B, Rasmussen AD (2005) Intramuscular injection of hypertonic saline: in vitro and in vivo muscle tissue toxicity and spinal neurone c-fos expression. Basic Clin Pharmacol Toxicol 97:52–57

    Article  PubMed  CAS  Google Scholar 

  • Svensson P, De Laat A, Graven-Nielsen T, Arendt-Nielsen L (1998a) Experimental jaw-muscle pain does not change heteronymous H-reflexes in the human temporalis muscle. Exp Brain Res 121:311–318

    Article  PubMed  CAS  Google Scholar 

  • Svensson P, Graven-Nielsen T, Matre D, Arendt-Nielsen L (1998b) Experimental muscle pain does not cause long-lasting increases in resting electromyographic activity. Muscle Nerve 21:1382–1389

    Article  PubMed  CAS  Google Scholar 

  • Svensson P, Wang K, Sessle BJ, Arendt-Nielsen L (2004) Associations between pain and neuromuscular activity in the human jaw and neck muscles. Pain 109:225–232

    Article  PubMed  Google Scholar 

  • Torisu T, Wang K, Svensson P, De Laat A, Fujii H, rendt-Nielsen L (2006) Effects of muscle fatigue induced by low-level clenching on experimental muscle pain and resting jaw muscle activity: gender differences. Exp Brain Res 174:566–574

    Article  PubMed  Google Scholar 

  • Torisu T, Wang K, Svensson P, De Laat A, Fujii H, Arendt-Nielsen L (2007) Effect of low-level clenching and subsequent muscle pain on exteroceptive suppression and resting muscle activity in human jaw muscles. Clin Neurophysiol 118:999–1009

    Article  PubMed  Google Scholar 

  • Travell JG, Rinzler S, Herman M (1942) Pain and disability of the shoulder and arm. JAMA 120:417–422

    Article  Google Scholar 

  • Travell J, Berry C, Bigelow N (1944) Effects of referred somatic pain on structures in the reference zone. APS 3:49

    Google Scholar 

  • Truini A, Romaniello A, Svensson P, Galeotti F, Graven-Nielsen T, Wang K, Cruccu G, Arendt-Nielsen L (2006) Experimental skin pain and muscle pain induce distinct changes in human trigeminal motoneuronal excitability. Exp Brain Res 174:622–629

    Article  PubMed  CAS  Google Scholar 

  • Wang K, Svensson P, Arendt-Nielsen L (1999) Modulation of exteroceptive suppression periods in human jaw-closing muscles by local and remote experimental muscle pain. Pain 82:253–262

    Article  PubMed  CAS  Google Scholar 

  • Wang K, Arima T, Arendt-Nielsen L, Svensson P (2000a) EMG-force relationships are influenced by experimental jaw-muscle pain. J Oral Rehabil 27:394–402

    Article  PubMed  CAS  Google Scholar 

  • Wang K, Svensson P, Arendt-Nielsen L (2000b) Effect of tonic muscle pain on short-latency jaw-stretch reflexes in humans. Pain 88:189–197

    Article  PubMed  CAS  Google Scholar 

  • Zidar J, Bäckman E, Bengtsson A, Henriksson KG (1990) Quantitative EMG and muscle tension in painful muscles in fibromyalgia. Pain 40:249–254

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Graven-Nielsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Graven-Nielsen, T., Arendt-Nielsen, L. (2010). Reorganized Motor Control Due to Muscle Pain. In: Mense, S., Gerwin, R. (eds) Muscle Pain: Understanding the Mechanisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85021-2_7

Download citation

Publish with us

Policies and ethics