Skip to main content

Peripheral Mechanisms of Muscle Pain: Response Behavior of Muscle Nociceptors and Factors Eliciting Local Muscle Pain

  • Chapter
  • First Online:
Muscle Pain: Understanding the Mechanisms

Abstract

This chapter deals with peripheral mechanisms that lead to local muscle pain and describes diseases that exhibit this type of pain. Local muscle pain is due to excitation of muscle nociceptors (so-called nociceptive pain; other forms of muscle pain such as radiculopathic pain or pain due to CNS lesions can occur without activation of muscle nociceptors). Nociceptors in muscle are sensitive to strong mechanical stimuli and pain-producing substances, some of which are released from muscle tissue during pathological alterations. Substances such as bradykinin and prostaglandin E2 have a sensitizing rather than excitatory action and increase the sensitivity of nociceptors to other stimuli. This sensitization of muscle nociceptors is assumed to be the peripheral mechanism of the tenderness of lesioned muscle (there are also CNS mechanisms causing tenderness). Clinical examples of local muscle pain include trauma, acute inflammation, and intermittent claudication. ATP, protons (H+ ions), bradykinin, and other substances are known to be released from inflamed tissue. Ischemic contractions elicit strong muscle pain but excite just a small subpopulation of nociceptive free nerve endings. Non-nociceptive free nerve endings in muscle are likely to have an important function in the adjustment of respiration and circulation during muscular exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arksey H (1998) RSI and the experts: the construction of medical knowledge. ULC, London

    Google Scholar 

  • Berberich P, Hoheisel U, Mense S (1988) Effects of a carrageenan-induced myositis on the discharge properties of group III and IV muscle receptors in the cat. J Neurophysiol 59:1395–1409

    PubMed  CAS  Google Scholar 

  • Bereiter DA, Cioffi JL, Bereiter DF (2005) Oestrogen receptor-immunoreactive neurons in the trigeminal sensory system of male and cycling female rats. Arch Oral Biol 50:971–979

    Article  PubMed  CAS  Google Scholar 

  • Bessou P, Laporte Y (1958) Activation des fibres afférentes amyéliniques d'origine musculaire. Compt Rend Soc Biol 152:1587–1590

    CAS  Google Scholar 

  • Blackmore SM, Jander RM, Culp RW (2006) Management of distal biceps and triceps ruptures. J Hand Ther 19:154–168

    Article  PubMed  Google Scholar 

  • Bobbert MF, Hollander AP, Huijing PA (1986) Factors in delayed onset muscular soreness of man. Med Sci Sport Exerc 18:75–81

    Article  CAS  Google Scholar 

  • Burian M, Geisslinger G (2005) COX-dependent mechanisms involved in the antinociceptive action of NSAIDs at central and peripheral sites. Pharmacol Ther 107:139–154

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G (2000) P2X receptors in sensory neurones. Br J Anaesth 84:476–488

    Article  PubMed  CAS  Google Scholar 

  • Cairns BE, Hu JW, Arendt-Nielsen L et al. (2001) Sex-related differences in human pain and rat afferent discharge evoked by injection of glutamate into the masseter muscle. J Neurophysiol 86:782–791

    PubMed  CAS  Google Scholar 

  • Cairns BE, Svensson P, Wang K (2003) Activation of peripheral NMDA receptors contributes to human pain and rat afferent discharges evoked by injection of glutamate into the masseter muscle. J Neurophysiol 90:2098–2105

    Article  PubMed  CAS  Google Scholar 

  • Caterina MJ, David J (1999) Sense and specificity: a molecular identity for nociceptors. Curr Opin Neurobiol 9:525–530

    Article  PubMed  CAS  Google Scholar 

  • Caterina MJ, Julius D (2001) The vanilloid receptor: a molecular gateway to the pain pathway. Annu Rev Neurosci 24:487–517

    Article  PubMed  CAS  Google Scholar 

  • Cherry WB, Mueller PS (2006) Rectus sheath hematoma: review of 126 cases at a single institution. Medicine (Baltimore) 85:105–110

    Article  Google Scholar 

  • Clausen JP, Lassen NA (1971) Muscle blood flow during exercise in normal man studied by the 133Xenon clearance method. Cardiovasc Res 5:245–254

    Article  PubMed  CAS  Google Scholar 

  • Cook SP, McCleskey EW (2002) Cell damage excites nociceptors through release of cytosolic ATP. Pain 95:41–47

    Article  PubMed  CAS  Google Scholar 

  • Crameri RM, Aagaard P, Qvortrup K et al. (2007) Myofibre damage in human skeletal muscle: effects of electrical stimulation versus voluntary contraction. J Physiol 583:365–380

    Article  PubMed  CAS  Google Scholar 

  • Diehl B, Hoheisel U, Mense S (1993) The influence of mechanical stimuli and of acetylsalicylic acid on the discharges of slowly conducting afferent units from normal and inflamed muscle in the rat. Exp Brain Res 92:431–440

    Article  PubMed  CAS  Google Scholar 

  • Digiesi V, Bartoli V, Dorigo B (1975) Effect of a proteinase inhibitor on intermittent claudication or on pain at rest in patients with peripheral arterial disease. Pain 1:385–389

    Article  PubMed  CAS  Google Scholar 

  • DiRosa M, Giroud JP, Willoughby DA (1971) Studies of the mediators of the acute inflammatory response induced in rats in different sites by carrageenan and turpentine. J Path 104:15–29

    Article  CAS  Google Scholar 

  • Djouhri L, Lawson SN (2004) Aβ-fiber nociceptive primary afferent neurons: a review of incidence and properties in relation to other afferent A-fiber neurons in mammals. Brain Res Rev 46:131–145

    Article  PubMed  Google Scholar 

  • Dong XD, Mann MK, Sessle BJ et al. (2006) Sensitivity of rat temporalis muscle afferent fibers to peripheral N-methyl-D-aspartate receptor activation. Neuroscience 141:939–945

    Article  PubMed  CAS  Google Scholar 

  • Dong XD, Mann MK, Kumar U et al. (2007) Sex-related differences in NMDA-evoked rat masseter muscle afferent discharge result from estrogen-mediated modulation of peripheral NMDA receptor activity. Neuroscience 146:822–832

    Article  PubMed  CAS  Google Scholar 

  • Enoka RM (1996) Eccentric contractions require unique activation strategies by the nervous system. J Appl Physiol 81:2339–2346

    PubMed  CAS  Google Scholar 

  • Ferreira SH (1972) Prostaglandins, aspirin-like drugs and analgesia. Nat New Biol 240:200–203

    Article  PubMed  CAS  Google Scholar 

  • Gavériaux-Ruff C, Karchewski LA, Hever X et al. (2008) Inflammatory pain is enhanced in delta opioid receptor-knockout mice. Eur J Neurosci 27:2558–2567

    Article  PubMed  Google Scholar 

  • Ge HY, Madeleine P, Arendt-Nielsen L (2005) Gender differences in pain modulation evoked by repeated injections of glutamate into the human trapezius muscle. Pain 113:134–140

    Article  PubMed  CAS  Google Scholar 

  • Graven-Nielsen T (2006) Fundamentals of muscle pain, referred pain and deep tissue hyperalgesia. Scand J Rheumatol 35:1–43

    Article  Google Scholar 

  • Graven-Nielsen T, Arendt-Nielsen L, Mense S (2002) Thermosensitivity of muscle: high-intensity thermal stimulation of muscle tissue induces muscle pain in humans. J Physiol 540:647–656

    Article  PubMed  CAS  Google Scholar 

  • Graven-Nielsen T, Jansson Y, Segerdahl M et al. (2003) Experimental pain by ischaemic contractions compared with pain by intramuscular infusions of adenosine and hypertonic saline. Eur J Pain 7:93–102

    Article  PubMed  CAS  Google Scholar 

  • Graven-Nielsen T, Mense S, Arendt-Nielsen L (2004) Painful and non-painful pressure sensations from human skeletal muscle. Exp Brain Res 59:273–283

    Article  Google Scholar 

  • Grigg P, Schaible H-G, Schmidt RF (1986) Mechanical sensitivity of group III and IV afferents from posterior articular nerve in normal and inflamed cat knee. J Neurophysiol 55:635–643

    PubMed  CAS  Google Scholar 

  • Häbler HJ, Jänig W, Koltzenburg M (1988) A novel type of unmyelinated chemosensitive nociceptor in the acutely inflamed urinary bladder. Agents Actions 25:219–221

    Article  PubMed  Google Scholar 

  • Hägg GM (2003) The Cinderella hypothesis. In: Johansson J, Windhorst U, Djupsöbacka M, Passatore M (eds) Chronic work-related myalgia. Gävle University Press, Gävle

    Google Scholar 

  • Handwerker HO, Kilo S, Reeh PW (1991) Unresponsive afferent nerve fibres in the sural nerve of the rat. J Physiol 435:229–242

    PubMed  CAS  Google Scholar 

  • Head H, Rivers WHR, Sherren J (1905) The afferent nervous system from a new aspect. Brain 28:99–115

    Article  Google Scholar 

  • Hnik P, Holas M, Krekule I et al. (1976) Work-induced potassium changes in skeletal muscle and effluent venous blood assessed by liquid ion-exchanger microelectrodes. Pflügers Arch 362:85–94

    Article  PubMed  CAS  Google Scholar 

  • Hoheisel U, Reinöhl J, Unger T et al. (2004) Acidic pH and capsaicin activate mechanosensitive group IV muscle receptors in the rat. Pain 110:149–157

    Article  PubMed  CAS  Google Scholar 

  • Hoheisel U, Unger T, Mense S (2005) Excitatory and modulatory effects of inflammatory cytokines and neurotrophins on mechanosensitive group IV muscle afferents in the rat. Pain 114:168–176

    Article  PubMed  CAS  Google Scholar 

  • Hoheisel U, Unger T, Mense S (2007) Sensitization of rat dorsal horn neurones by NGF-induced subthreshold potentials and low-frequency activation. A study employing intracellular recordings in vivo. Brain Res 1169:34–43

    Article  PubMed  CAS  Google Scholar 

  • Holzer P (1988) Local effector functions of capsaicin-sensitive sensory nerve endings: involvement of tachykinins, calcitonin gene-related peptide and other neuropeptides. Neuroscience 24:739–768

    Article  PubMed  CAS  Google Scholar 

  • Hostens I, Ramon H (2005) Assessment of muscle fatigue in low level monotonous task performance during car driving. J Electromyogr Kinesiol 15:266–274

    Article  PubMed  CAS  Google Scholar 

  • Jensen K, Tuxen C, Pedersen-Bjergaard U et al. (1990) Pain and tenderness in human temporal muscle induced by bradykinin and 5-hydroxytryptamine. Peptides 11:1127–1132

    Article  PubMed  CAS  Google Scholar 

  • Johansson J, Windhorst U, Djupsöbacka M, Passatore M (2003) Chronic work-related myalgia. Gävle University Press, Gävle

    Google Scholar 

  • Jones DA, Newham DJ, Clarkson PM (1987) Skeletal muscle stiffness and pain following eccentric exercise of the elbow flexors. Pain 30:233–242

    Article  PubMed  CAS  Google Scholar 

  • Jose PJ, Page DA, Wolstenholme BE et al. (1981) Bradykinin-stimulated prostaglandin E2 production of endothelial cells and its modulation by antiinflammatory compounds. Inflammation 5:363–378

    Article  PubMed  CAS  Google Scholar 

  • Kalia M, Mei SS, Kao FF (1981) Central projections from ergoreceptors (C-fibers) in muscle involved in cardiopulmonary responses to static exercise. Circ Res 48:148–162

    Google Scholar 

  • Kalia LV, Gingrich JR, Salter MW (2004) Src in synaptic transmission and plasticity. Oncogene 23:8007–8016

    Article  PubMed  CAS  Google Scholar 

  • Kao FF (1963) An experimental study of the pathway involved in exercise hyperpnoea employing cross-circulation techniques. In: Cunningham DJC, Lloyd BB (eds) The regulation of human respiration. Blackwell, Oxford

    Google Scholar 

  • Kaufman MP, Longhurst JC, Rybicki KJ et al. (1983) Effects of static muscular contraction on impulse activity of groups III and IV afferents in cats. J Appl Physiol 55:105–112

    PubMed  CAS  Google Scholar 

  • Kaufman MP, Rybicki KJ, Waldrop TG (1984) Effect of ischemia on responses of group III and IV afferents to contraction. J Appl Physiol 57:644–650

    PubMed  CAS  Google Scholar 

  • Kellgren JH (1938) Observations on referred pain arising from muscle. Clin Sci 3:175–190

    Google Scholar 

  • Kniffki KD, Mense S, Schmidt RF (1978) Responses of group IV afferent units from skeletal muscle to stretch, contraction and chemical stimulation. Exp Brain Res 31:511–522

    Article  PubMed  CAS  Google Scholar 

  • Kress M, Reeh P (1996) Chemical excitation and sensitization in nociceptors. In: Belmonte C, Cervero F (eds) Neurobiology of nociceptors. Oxford University Press, Oxford

    Google Scholar 

  • Kumazawa T (1996) The polymodal receptor: bio-warning and defense system. Prog Brain Res 113:3–18

    Article  PubMed  CAS  Google Scholar 

  • Kumazawa T, Mizumura K (1976) The polymodal C-fiber receptor in the muscle of the dog. Brain Res 101:589–593

    Article  PubMed  CAS  Google Scholar 

  • Kumazawa T, Mizumura K (1977) Thin-fibre receptors responding to mechanical, chemical, and thermal stimulation in the skeletal muscle of the dog. J Physiol 273:179–194

    PubMed  CAS  Google Scholar 

  • Lawand NB, McNearney T, Westlund KN (2000) Amino acid release into the knee joint: key role in nociception and inflammation. Pain 86:69–74

    Article  PubMed  CAS  Google Scholar 

  • LeResche L, Mancl L, Sherman JJ et al. (2003) Changes in temporomandibular pain and other symptoms across the menstrual cycle. Pain 106:253–261

    Article  PubMed  Google Scholar 

  • Lewis T, Pickering GW, Rothschild P (1931) Observations upon muscular pain in intermittent claudication. Heart 15:359–383

    Google Scholar 

  • Lieber RL (1992) Skeletal muscle: structure and function. Williams and Wilkins, Baltimore

    Google Scholar 

  • Liedtke W (2005) TRPV4 plays an evolutionary conserved role in the transduction of osmotic and mechanical stimuli in live animals. J Physiol 567:53–58

    Article  PubMed  CAS  Google Scholar 

  • Light AR, Perl ER (2003) Unmyelinated afferent fibers are not only for pain anymore. J Comp Neurol 461:137–139

    Article  PubMed  Google Scholar 

  • Lindahl O (1961) Experimental skin pain induced by injection of water-soluble substances in humans. Acta Physiol Scand 51(Suppl 179):1–90

    Google Scholar 

  • MacIntyre DL, Reid WD, McKenzie DC (1995) Delayed muscle soreness. The inflammatory response to muscle injury and its clinical implications. Sports Med 20:24–40

    Article  PubMed  CAS  Google Scholar 

  • Mann MK, Dong XD, Svensson P (2006) Influence of intramuscular nerve growth factor injection on the response properties of rat masseter muscle afferent fibers. J Orofac Pain 20:325–336

    PubMed  Google Scholar 

  • Marchand F, Perretti M, McMahon SB (2005) Role of the immune system in chronic pain. Nat Rev Neurosci 6:521–532

    Article  PubMed  CAS  Google Scholar 

  • Marchettini P, Simone DA, Caputi G et al. (1996) Pain from excitation of identified muscle nociceptors in humans. Brain Res 40:109–116

    Article  Google Scholar 

  • Matava MJ, Purcell DB, Rudzki JR (2005) Partial-thickness rotator cuff tears. Am J Sports Med 33:1405–1417

    Article  PubMed  Google Scholar 

  • McCloskey DI, Mitchell JH (1972) Reflex cardiovascular and respiratory responses originating in exercising muscle. J Physiol 224:173–186

    PubMed  CAS  Google Scholar 

  • Menetrey J, Kasemkijwattana C, Day CS et al. (2000) Growth factors improve muscle healing in vivo. J Bone Joint Surg Br 82:131–137

    Article  PubMed  CAS  Google Scholar 

  • Mense S (1981) Sensitization of group IV muscle receptors to bradykinin by 5-hydroxytryptamine and prostaglandin E2. Brain Res 225:95–105

    Article  PubMed  CAS  Google Scholar 

  • Mense S (1982) Reduction of the bradykinin-induced activation of feline group III and IV muscle receptors by acetylsalicylic acid. J Physiol 326:269–283

    PubMed  CAS  Google Scholar 

  • Mense S (1997) Pathophysiologic basis of muscle pain syndromes. Phys Med Rehab Clin North Am 8:23–53

    Google Scholar 

  • Mense S (2007) Muscle pain model, ischemia-induced and hypertonic saline-induced. In: Schmidt RF, Willis WD (eds) Encyclopedia of pain. Springer, Berlin Heidelberg

    Google Scholar 

  • Mense S, Gerwin RD (eds) (2010) Muscle pain: diagnosis and treatment. Springer, Heidelberg

    Google Scholar 

  • Mense S, Hoheisel U (1990) Influence of leukotriene D4 on the discharges of slowly conducting afferent units from normal and inflamed muscle in the rat. Pflügers Arch 415(Suppl 1):R105

    Google Scholar 

  • Mense S, Meyer H (1985) Different types of slowly conducting afferent units in cat skeletal muscle and tendon. J Physiol 363:403–417

    PubMed  CAS  Google Scholar 

  • Mense S, Skeppar P (1991) Discharge behaviour of feline gamma-motoneurones following induction of an artificial myositis. Pain 46:201–210

    Article  PubMed  CAS  Google Scholar 

  • Mense S, Stahnke M (1983) Responses in muscle afferent fibres of slow conduction velocity to contractions and ischaemia in the cat. J Physiol 342:383–397

    PubMed  CAS  Google Scholar 

  • Mense S, Light AR, Perl ER (1981) Spinal terminations of subcutaneous high-threshold mechanoreceptors. In: Brown AG, Réthelyi M (eds) Spinal cord sensation. Scottish Academic Press, Edinburgh

    Google Scholar 

  • Meru AV, Mittra S, Thyagarajan B et al. (2006) Intermittent claudication: an overview. Atherosclerosis 187:221–237

    Article  PubMed  CAS  Google Scholar 

  • Mills KR, Newham DJ, Edwards RHT (1982) Force, contraction frequency and energy metabolism as determinants of ischaemic muscle pain. Pain 14:149–154

    Article  PubMed  CAS  Google Scholar 

  • Molea D, Murcek B, Blanken C et al. (1987) Evaluation of two manipulative techniques in the treatment of postexercise muscle soreness. J Am Osteopath Assoc 87:477–483

    PubMed  CAS  Google Scholar 

  • Mörk H, Ashina M, Bendtsen L et al. (2003) Experimental muscle pain and tenderness following infusion of endogenous substances in humans. Eur J Pain 7:145–153

    Article  PubMed  CAS  Google Scholar 

  • Nakahara M (1971) The effect of a tourniquet on the kinin–kininogen system in blood and muscle. Thromb Diathes Haemorrh 26:264–274

    CAS  Google Scholar 

  • Newham DJ (1988) The consequences of eccentric contractions and their relationship to delayed onset muscle pain. Eur J Appl Physiol Occup Physiol 57:353–359

    Article  PubMed  CAS  Google Scholar 

  • Newham DJ, Mills KR, Quigley BM et al. (1983) Pain and fatigue after concentric and eccentric muscle contractions. Clin Sci (Lond) 64:55–62

    CAS  Google Scholar 

  • Nogales-Gadea G, Arenas J, Andreu AL (2007) Molecular genetics of McArdle's disease. Curr Neurol Neurosci Rep 7:84–92

    Article  PubMed  CAS  Google Scholar 

  • O'Connor PJ, Cook DB (2001) Moderate-intensity muscle pain can be produced and sustained during cycle ergometry. Med Sci Sports Exerc 33:1046–1051

    Article  PubMed  Google Scholar 

  • Ørstavik K, Namer B, Schmidt R et al. (2006) Abnormal function of C-fibers in patients with diabetic neuropathy. J Neurosci 26:11287–11294

    Article  PubMed  CAS  Google Scholar 

  • Pelkey KA, Marshall KC (1998) Actions of excitatory amino acids on mesencephalic trigeminal neurons. Can J Physiol Pharmacol 76:900–908

    Article  PubMed  CAS  Google Scholar 

  • Perkins MN, Kelly D (1993) Induction of bradykinin-B1 receptors in vivo in a model of ultra-violet irradiation-induced thermal hyperalgesia in the rat. Br J Pharmacol 110:1441–1444

    Article  PubMed  CAS  Google Scholar 

  • Pezet S, McMahon SB (2006) Neurotrophins: mediators and modulators of pain. Annu Rev Neurosci 29:507–538

    Article  PubMed  CAS  Google Scholar 

  • Pyne DB (1994) Exercise-induced muscle damage and inflammation: a review. Aust J Sci Med Sport 26:49–58

    PubMed  CAS  Google Scholar 

  • Rees H, Sluka KA, Westlund KN et al. (1994) Do dorsal root reflexes augment peripheral inflammation? Neuroreport 21:821–824

    Article  Google Scholar 

  • Reid MB, Li YP (2001) Tumor necrosis factor-alpha and muscle wasting: a cellular perspective. Respir Res 2:269–272

    Article  PubMed  CAS  Google Scholar 

  • Reinert A, Kaske A, Mense S (1998) Inflammation-induced increase in the density of neuropeptide-immunoreactive nerve endings in rat skeletal muscle. Exp Brain Res 121:174–180

    Article  PubMed  CAS  Google Scholar 

  • Reinöhl J, Hoheisel U, Unger T et al. (2003) Adenosine triphosphate as a stimulant for nociceptive and non-nociceptive muscle group IV receptors in the rat. Neurosci Lett 338:25–28

    Article  PubMed  Google Scholar 

  • Ro JY (2003) Contribution of central and peripheral NMDA receptors in craniofacial muscle nociception and edema formation. Brain Res 979:78–84

    Article  PubMed  CAS  Google Scholar 

  • Ro JY, Nies M, Zhang Y (2005) The role of peripheral N-methyl-D-aspartate receptors in muscle hyperalgesia. Neuroreport 16:485–489

    Article  PubMed  CAS  Google Scholar 

  • Rollman GB, Lautenbacher S (2001) Sex differences in musculoskeletal pain. Clin J Pain 17:20–24

    Article  PubMed  CAS  Google Scholar 

  • Rosendal L, Larsson B, Kristiansen J et al. (2004) Increase in muscle nociceptive substances and anaerobic metabolism in patients with trapezius myalgia: microdialysis in rest and during exercise. Pain 112:324–334

    Article  PubMed  CAS  Google Scholar 

  • Rozhold O, Andrs M, Vojácek K (1990) Histopathological changes in paravertebral muscles by chronic discopathies. Acta Univ Palacki Olomuc Fac Med 125:197–207

    PubMed  CAS  Google Scholar 

  • Sahlin K, Harris RC, Nylind B et al. (1976) Lactate content and pH in muscle samples obtained after dynamic exercise. Pflügers Arch 67:143–149

    Article  Google Scholar 

  • Saltin B, Radegran G, Koskolou MD et al. (1998) Skeletal muscle blood flow in humans and its regulation during exercise. Acta Physiol Scand 162:421–436

    Article  PubMed  CAS  Google Scholar 

  • Samuelsson B (1983) Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science 220:568–575

    Article  PubMed  CAS  Google Scholar 

  • Schade H (1924) Die Molekularpathologie in ihrem Verhältnis zur Zellularpathologie und zum klinischen Krankheitsbild am Beispiel der Entzündung. Münch Med Wochenschr 71:1–4

    Google Scholar 

  • Schäfers M, Sorkin LS, Sommer C (2003) Intramuscular injection of tumor necrosis factor-alpha induces muscle hyperalgesia in rats. Pain 104:579–588

    Article  PubMed  CAS  Google Scholar 

  • Schomburg ED, Steffens H, Maznychenko AV et al. (2007) Acute muscle inflammation enhances the monosynaptic reflexes and c-fos expression in the feline spinal cord. Eur J Pain 11:579–586

    Article  PubMed  CAS  Google Scholar 

  • Schweizer A, Brom R, Glatt M et al. (1984) Leukotrienes reduce nociceptive responses to bradykinin. Eur J Pharmacol 105:105–112

    Article  PubMed  CAS  Google Scholar 

  • Shah JP, Phillips TM, Danoff JV et al. (2005) An in vivo microanalytical technique for measuring the local biochemical milieu of human skeletal muscle. J Appl Physiol 99:1977–1984

    Article  PubMed  CAS  Google Scholar 

  • Sicuteri F, Franchi G, Fanciullacci M (1964) Bradichinina e dolore da ischemia. Settim Med 52:127–139

    Google Scholar 

  • Sjögaard G, Sjögaard K (1998) Muscle injury in repetitive motion disorders. Clin Orthop 351:21–31

    PubMed  Google Scholar 

  • Sjögaard G, Lundberg U, Kadefors R (2000) The role of muscle activity and mental load in the development of pain and degenerative processes at the muscle cell level during computer work. Eur J Appl Physiol 83:99–105

    Article  PubMed  Google Scholar 

  • Sluka KA, Kalra A, Moore SA (2001) Unilateral intramuscular injections of acidic saline produce a bilateral long-lasting hyperalgesia. Muscle Nerve 24:37–46

    Article  PubMed  CAS  Google Scholar 

  • Staunton HP, Taylor SH, Donald KW (1964) The effect of vascular occlusion on the pressor response to static muscular work. Clin Sci 27:283–291

    PubMed  CAS  Google Scholar 

  • Stuerenburg HJ, Kunze K (1998) Tissue nerve growth factor concentrations in neuromuscular diseases. Eur J Neurol 5:487–490

    Article  PubMed  Google Scholar 

  • Sutherland SP, Cook SP, McCleskey EW (2000) Chemical mediators of pain due to tissue damage and ischemia. Prog Brain Res 129:21–38

    Article  PubMed  CAS  Google Scholar 

  • Svensson P, Cairns BE, Wang K et al. (2003) Glutamate-evoked pain and mechanical allodynia in the human masseter muscle. Pain 101:221–227

    Article  PubMed  CAS  Google Scholar 

  • Svensson P, Wang K, Arendt-Nielsen L et al. (2005) Pain effects of glutamate injections into human jaw or neck muscles. J Orofac Pain 19:109–118

    PubMed  Google Scholar 

  • Taguchi T, Sato J, Mizumura K (2005) Augmented mechanical response of muscle thin-fiber sensory receptors recorded from rat muscle-nerve preparations in vitro after eccentric contraction. J Neurophysiol 94:2822–2831

    Article  PubMed  Google Scholar 

  • Tegeder L, Zimmermann J, Meller ST et al. (2002) Release of algesic substances in human experimental muscle pain. Inflamm Res 51:393–402

    Article  PubMed  CAS  Google Scholar 

  • Ushida T, Tani T, Kawasaki M et al. (1999) Peripheral administration of an N-methyl-D-aspartate receptor antagonist (MK-801) changes dorsal horn neuronal responses in rats. Neurosci Lett 260:89–92

    Article  PubMed  CAS  Google Scholar 

  • Vane JR (1971) Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol 231:232–235

    PubMed  CAS  Google Scholar 

  • Wallengren J, Hakanson R (1987) Effects of substance P, neurokinin A and calcitonin gene-related peptide in human skin and their involvement in sensory nerve-mediated responses. Eur J Pharmacol 143:267–273

    Article  PubMed  CAS  Google Scholar 

  • Wenk HN, McCleskey EW (2007) A novel mouse skeletal muscle nerve preparation and in vitro model of ischemia. J Neurosci Methods 159:244–251

    Article  PubMed  CAS  Google Scholar 

  • Wijnhoven HA, de Vet HC, Smit HA et al. (2006) Hormonal and reproductive factors are associated with chronic low back pain and chronic upper extremity pain in women — the MORGEN study. Spine 31:1496–1502

    Article  PubMed  Google Scholar 

  • Wong EHF, Kemp JA (1991) Sites for antagonism on the N-methyl-D-aspartate receptor channel complex. Annu Rev Pharmacol Toxicol 31:401–425

    Article  PubMed  CAS  Google Scholar 

  • Yu JG, Malm C, Thornell LE (2002) Eccentric contractions leading to DOMS do not cause loss of desmin nor fibre necrosis in human muscle. Histochem Cell Biol 118:29–34

    PubMed  CAS  Google Scholar 

  • Zhang XF, Chen J, Faltynek CR et al. (2008) Transient receptor potential A1 mediates an osmotically activated ion channel. Eur J Neurosci 27:605–611

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mense .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mense, S. (2010). Peripheral Mechanisms of Muscle Pain: Response Behavior of Muscle Nociceptors and Factors Eliciting Local Muscle Pain. In: Mense, S., Gerwin, R. (eds) Muscle Pain: Understanding the Mechanisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85021-2_3

Download citation

Publish with us

Policies and ethics