Skip to main content

A Meshless Technique Based on Integrated Radial Basis Function Networks for Elliptic Partial Differential Equations

  • Conference paper
Meshfree Methods for Partial Differential Equations IV

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 65))

  • 1286 Accesses

Abstract

This paper presents a meshless technique based on radial basis function networks (RBFNs) for solving Dirichlet boundary value problems governed by the Poisson and biharmonic equations. The technique employs integrated RBFNs (IRBFns) to approximate the field variable and point collocation to discretize the PDE. The boundary conditions are incorporated into IRBFNs via integration constants, which occurs prior to the transformation of the network-weight spaces into the physical space. Several linear and nonlinear test problems are considered to demonstrate the attractiveness of the present meshless techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.N. Athuri and S. Shen, The Meshless Local Petrav-Galerkin Methad. Tech Science Press, Encino, 2002

    Google Scholar 

  2. T. Belytschko, Y. Krongauz, D. Organ, M. Fleming and P. Krysl, Meshless methods: an overview and recent developments, Computer Methods in Applied Mechanics and Engineering, 139 (1996) 3–47.

    Article  MATH  Google Scholar 

  3. O. Botella and R. Peyret, Benchmark spectral results on the lid-driven cavity flow, Computers & Fluids, 27(4) (1998) 421–433.

    Article  MATH  Google Scholar 

  4. C.-H. Bruneau and C. Jouron, An efficient scheme for solving steady incompressible Navier-Stokes equations, Journal of Computational Physics, 89(2) (1990) 389–413.

    Article  MATH  Google Scholar 

  5. G.B. Deng, J. Piquet, P. Queutey and M. Visonneau, Incompressible flow calculations with a consistent physical interpolation finite volume approach, Computers & Fluids, 23(8) (1994) 1029–1047.

    Article  MATH  Google Scholar 

  6. G.E. Fasshauer, Meshfree Approximation Methods With Matlab, Interdisciplinary Mathematical Sciences.—Vol. 6, World Scientific Publishers, Singapore, 2007.

    MATH  Google Scholar 

  7. U. Ghia, K.N. Ghia and C.T. Shin, High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, Journal of Computational Physics, 48 (1982) 387–411.

    Article  MATH  Google Scholar 

  8. S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice-Hall, New Jersey, 1999.

    Google Scholar 

  9. W.R. Madych and S.A. Nelson, Multivariate interpolation and conditionally positive definite functions, Approximation Theory and its Applications, 4 (1988) 77–89.

    MATH  MathSciNet  Google Scholar 

  10. W.R. Madych and S.A. Nelson, Multivariate interpolation and conditionally positive definite functions, II, Mathematics of Computation, 54(189) (1990) 211–230.

    Article  MATH  MathSciNet  Google Scholar 

  11. N. Mai-Duy and R.I. Tanner, A collocation method based on one-dimensional RBF interpolation scheme for solving PDEs, International Journal of Numerical Methods for Heat & Fluid Flow, 17(2) (2007) 165–186.

    Article  MathSciNet  Google Scholar 

  12. N. Mai-Duy and T. Tran-Cong, Numerical solution of differential equations using multiquadric radial basis function networks, Neural Networks, 14(2) (2001) 185–199.

    Article  Google Scholar 

  13. N. Mai-Duy and T. Tran-Cong, Numerical solution of Navier-Stokes equations using multiquadric radial basis function networks, International Journal for Numerical Methods in Fluids, 37 (2001) 65–86.

    Article  MATH  Google Scholar 

  14. N. Mai-Duy and T. Tran-Cong, Approximation of function and its derivatives using radial basis function networks, Applied Mathematical Modelling, 27 (2003) 197–220.

    Article  MATH  Google Scholar 

  15. N. Mai-Duy and T. Tran-Cong, An efficient indirect RBFN-based method for numerical solution of PDEs, Numerical Methods for Partial Differential Equations, 21 (2005), 770–790.

    Article  MATH  MathSciNet  Google Scholar 

  16. N. Mai-Duy and T. Tran-Cong, Solving biharmonic problems with scatteredpoint discretisation using indirect radial-basis-function networks, Engineering Analysis with Boundary Elements, 30(2) (2006) 77–87.

    Article  Google Scholar 

  17. N. Mai-Duy and T. Tran-Cong, A Cartesian-grid collocation method based on radial-basis-function networks for solving PDEs in irregular domains, Numerical Methods for Partial Differential Equations, 23(5) (2007) 1192–1210.

    Article  MATH  MathSciNet  Google Scholar 

  18. J.J. More and D.C. Sorensen, Computing a trust region step, SIAM Journal on Scientific and Statistical Computing, 3 (1983) 553–572.

    Article  MathSciNet  Google Scholar 

  19. H. Wendland, Scaterred, Data Approximation, Cambridge University Press, Cambridge, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mai-Duy, N., Tran-Cong, T. (2008). A Meshless Technique Based on Integrated Radial Basis Function Networks for Elliptic Partial Differential Equations. In: Griebel, M., Schweitzer, M.A. (eds) Meshfree Methods for Partial Differential Equations IV. Lecture Notes in Computational Science and Engineering, vol 65. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79994-8_9

Download citation

Publish with us

Policies and ethics