Skip to main content

Lattice Gas Automata Simulation of 2D Site-Percolation Diffusion: Configuration Dependence of the Theoretically Expected Crossover of Diffusion Regime

  • Conference paper
  • 1622 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5191))

Abstract

Theoretical analysis of random walk on percolation lattices has predicted that, at the occupied site concentrations of above the threshold value, a characteristic crossover between an initial sub-diffusion to a final classical diffusion behavior should occur. In this study, we have employed the lattice gas automata model to simulate random walk over a square 2D site-percolation lattice. Quite good result was obtained for the critical exponent of diffusion coefficient. The random walker was found to obey the anomalous sub-diffusion regime, with the exponent decreasing when the occupied site concentration decreases. The expected crossover between diffusion regimes was observed in a configuration-dependent manner, but the averaging over the ensemble of lattice configurations removed any manifestation of such crossovers. This may have been originated from the removal of short-scale inhomogeneities in percolation lattices occurring after ensemble averaging.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jovanovic, B., Buldyrev, S.V., Havlin, S., Stanley, H.E.: Phys. Rev. E 50, 2403 (1994)

    Google Scholar 

  2. Khan, S., Reynolds, A.M., Morrison, I.E.G., Cherry, R.J.: Phys. Rev. E 71, 041915 (2005)

    Google Scholar 

  3. Moore, C., Newman, M.E.J.: Phys. Rev. E 61, 5678 (2000)

    Google Scholar 

  4. Henley, C.L.: Phys. Rev. Lett. 71, 2741 (1993)

    Google Scholar 

  5. Solomon, S., Weisbuch, G., de Arcangelis, L., Jan, N., Stauffer, D.: Physica A 277, 239 (2000)

    Google Scholar 

  6. Martins, P.H.L., Plascak, J.A.: Phys. Rev. E 67, 046119 (2003)

    Google Scholar 

  7. Orbach, R.: Science 231, 814 (1986)

    Google Scholar 

  8. Nakayam, T., Yakubo, K., Orbach, R.L.: Rev. Mod. Phys. 66, 381 (1994)

    Google Scholar 

  9. Klemm, A., Metzler, R., Kimmich, R.: Phys. Rev. E 65, 021112 (2002)

    Google Scholar 

  10. Aharony, A.: J. Stat. Phys. 34, 931 (1984)

    Google Scholar 

  11. Nienhuis, B., Riedel, E.K., Schick, M.: J. Phys. A 13, L189 (1980)

    Google Scholar 

  12. den Nijs, M.P.M.: J. Phys. A 12, 1857 (1979)

    Google Scholar 

  13. Ziff, R.M.: Phys. Rev. Lett. 69, 2670 (1992)

    Google Scholar 

  14. de Gennes, P.G.: La Recherche 7, 911 (1976)

    Google Scholar 

  15. Gefen, Y., Aharony, A., Alexander, S.: Phys. Rev. Lett. 50, 77 (1983)

    Google Scholar 

  16. Poole, O.J., Salt, D.W.: J. Phys. A 29, 7959 (1996)

    Google Scholar 

  17. Havlin, S., Bunde, S.: In: Havlin, S., Bunde, A. (eds.) Fractals and Disordered Systems. Springer, Berlin (1991)

    Google Scholar 

  18. Alexander, S., Orbach, R.: J. Physique Lett. 43, L625 (1982)

    Google Scholar 

  19. Sahimi, M., Hughes, B.D., Scriven, L.E., Davis, H.T.: J. Phys. C 16, L521 (1983)

    Google Scholar 

  20. Yuge, Y., Onizuka, K.: J. Phys. C 11, L571 (1978)

    Google Scholar 

  21. Pandey, R.B., Stauffer, D., Margolina, A., Zabolitzky, J.G.: J. Stat. Phys. 34, 427 (1984)

    Google Scholar 

  22. Straley, J.P.: Phys. Rev. B 15, 5733 (1977)

    Google Scholar 

  23. Rothman, D.H., Zaleski, S.: Rev. Mod. Phys. 66, 1417 (1994)

    Google Scholar 

  24. Bar-Yam, Y.: Dynamics of Complex Systems. Perseus Books Group, U.S (1997)

    MATH  Google Scholar 

  25. Matsumoto, M., Nishimura, T.: ACM Trans. Model. Comput. Simul. 8, 3 (1998)

    Google Scholar 

  26. Kapitulnik, A., Aharony, A., Deutscher, G., Stauffer, D.: J. Phys. A 16, L269 (1983)

    Google Scholar 

  27. Muralidhar, R., Jacobs, D.J., Ramkrishna, D., Nakanishi, H.: Phys. Rev. A 43, 6503 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hiroshi Umeo Shin Morishita Katsuhiro Nishinari Toshihiko Komatsuzaki Stefania Bandini

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ghaemi, M., Rezaei-Ghaleh, N., Asgari, Y. (2008). Lattice Gas Automata Simulation of 2D Site-Percolation Diffusion: Configuration Dependence of the Theoretically Expected Crossover of Diffusion Regime. In: Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T., Bandini, S. (eds) Cellular Automata. ACRI 2008. Lecture Notes in Computer Science, vol 5191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79992-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79992-4_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79991-7

  • Online ISBN: 978-3-540-79992-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics