Skip to main content

MR Compatible Tactile Sensing and Noise Analysis in a 1.5 Tesla MR System

  • Conference paper
Medical Imaging and Augmented Reality (MIAR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5128))

Included in the following conference series:

Abstract

Medical technologies have undergone significant development to overcome the problems inherent in Minimally Invasive Surgery (MIS) such as inhibited manual dexterity, reduced visual information and lack of direct touch feedback to make it easier for surgeons to operate. An endoscopic tool incorporating haptic feedback is being developed to increase the effectiveness of diagnostic procedures by providing force feedback. Magnetic Resonance Imaging (MRI) guidance is possible to allow tool localisation, however this enforces the requirement of MR compatibility on the device. This paper describes the work done in developing MR compatible sensing devices using piezoelectric sensor elements in two different formats and how each can be used to locate subsurface inclusions in s mined oft substrates. Results show that the position of a hard inclusion can be deterwith both methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mack, M.J.: Minimally invasive and robotic surgery. Jama 285, 568–572 (2001)

    Article  Google Scholar 

  2. Eltaib, M.E., Hewit, J.R.: Tactile sensing technology for minimal access surgery–a review. Mechatronics 13, 1163–1177 (2003)

    Article  Google Scholar 

  3. Howe, R.D., Matsuoka, Y.: Robotics for surgery. Annu. Rev. Biomed. Eng. 1, 211–240 (1999)

    Article  Google Scholar 

  4. Virtanen, J.: Enhancing the Compatibility of Surgical Robots with Magnetic Resonance Imaging. In: Faculty of Technology. University of Oulu, Oulu (2006)

    Google Scholar 

  5. McRobbie, D.W.: MRI from picture to proton. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  6. Melzer, A., Gutnabb, B., Lukoschek, A., Mark, M.: Experimental Evaluation of an MRI Compatible Telerobotic System for CT MRI Guided Interventions. Supplement to Radiology, pp. 226–409 (2003)

    Google Scholar 

  7. Koseki, Y., Chinzei, K., Koyachi, N., Arai, T.: Robotic Assist for MR-Guided Surgery Using Leverage and Parallelepiped Mechanism. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 940–948. Springer, Heidelberg (2000)

    Google Scholar 

  8. Chinzei, K., Hata, N., Jolesz, F.A., Kikinis, R.: Surgical Assist Robot for the Active Navigation in the Intraoperative MRI: Hardware Design Issues. In: Intelligent robots and systems; 2000 IEEE/RSJ International Conference, Takamatsu, Japan, vol. 1, pp. 727–732 (2000)

    Google Scholar 

  9. Elhawary, H., Zivanovic, A., Rea, M., Davies, B.L., Besant, C., McRobbie, D., Souza, N.D., Young, I., Lamperth, M.: A modular approach to MRI compatible Robotics: Interconnectable one DOF stages. IEEE Engineering and Medicine in biology magazine (in press, 2007)

    Google Scholar 

  10. Stoianovici, D., Patriciu, A., Mazilu, D., Petrisor, D.: Multi imager compatible robot for transperineal percutaneous prostate access. IEEE Transactions on Information Robotics (2005)

    Google Scholar 

  11. Madhani, A.J., Niemeyer, G., Salisbury, J.K.: The Black Falcon: a Teleoperated Surgical Instrument for Minimally Invasive Surgery. In: Intelligent robots and systems, Victoria, Canada, vol. 2, pp. 936–944 (1998)

    Google Scholar 

  12. Burdet, E., Gassert, R., Gowrishankar, G., Chapuis, D., Bleuler, H.: fMRI Compatible Haptic Interfaces to Investigate Human Motor Control. In: International symposium on experimental robotics, Singapore, vol. 2, pp. 25–34 (2004)

    Google Scholar 

  13. Tada, M., Kanade, T.: Design of an MR-compatible three-axis force sensor. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2005), pp. 3505–3510 (2005)

    Google Scholar 

  14. Moser, R.G., Burdet, E., Sache, L., Woodtli, H.R., Erni, J., Maeder, W., Bleuler, H.: An MR compatible robot technology. In: Robotics and Automation. Proceedings of IEEE International Conference on ICRA 2003, vol. 1, p. 15 (2003)

    Google Scholar 

  15. Field, D.: Anatomy: Palpation and Surface Markings, 2nd edn. Butterworth-Heinemann, Oxford (1997)

    Google Scholar 

  16. Wellman, P.H., Dalton, R., Kern, E.: Breast Tissue Stiffness in Compression is Correlated to Histological Diagnosis, Technical Report Harvard BioRobotics Laboratory, Division of Engineering and Applied Sciences, Harvard University

    Google Scholar 

  17. Burdea, G.: Force and touch feedback for virtual reality. John Wiley, Chichester (1996)

    Google Scholar 

  18. Dargahi, J.S.N.: Human tactile perception as a standard for artificial tactile sensing - a review. The International Journal of Medical Robotics and Computer Assisted Surgery 1, 23–35 (2004)

    Article  Google Scholar 

  19. Chinzei, K., Kikinis, R., Jolesz, F.A.: MR Compatibility of Mechatronic Devices: Design Criteria. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 1020–1030. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  20. Kistler, I.C.: The Piezoelectric Effect, Theory, Design and Usage (2007), www.GlobalSpec.com , http://www.designinfo.com/kistler/ref/tech_theory_text.htm

  21. Grimes, C.A.: High-frequency, transient magnetic susceptibility of ferroelectrics. Journal of applied physics 80, 4548–4552 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Takeyoshi Dohi Ichiro Sakuma Hongen Liao

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hamed, A., Tse, Z.T.H., Young, I., Lamperth, M. (2008). MR Compatible Tactile Sensing and Noise Analysis in a 1.5 Tesla MR System. In: Dohi, T., Sakuma, I., Liao, H. (eds) Medical Imaging and Augmented Reality. MIAR 2008. Lecture Notes in Computer Science, vol 5128. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79982-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79982-5_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79981-8

  • Online ISBN: 978-3-540-79982-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics