Discovering Homogenous Service Communities through Web Service Clustering

  • Wei Liu
  • Wilson Wong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5006)


Contemplating the enormous success of the Web and the reluctance in taking up the web service technology, the idea of a service engine enabled service-oriented architecture seems to be more and more plausible than the traditional registry based one. Automatically clustering WSDL files on the Web into functional similar homogenous service groups can be seen as a bootstrapping step for creating a service search engine and at the same time reduce the search space for service discovery. This paper devises techniques to automatically gather, discover, and integrate features related to a set of WSDL files, and cluster them into naturally occurring groups.


Content Word Function Word Interior Vertex UDDI Registry Sink Vertex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Peltz, C.: Web services orchestration - a review of emerging technologies, tools and standards. Technical report, Hewlett Packard, Co. (2003)Google Scholar
  2. 2.
    Garofalakis, J., Panagis, Y., Sakkopoulos, E., Tsakalidis, A.: Web service discovery mechanisms: Looking for a needle in a haystack? In: International Workshop on Web Engineering, Hypermedia Development and Web Engineering Principles and Techniques: Put them in use, in conjunction with ACM Hypertext, Santa Cruz (2004)Google Scholar
  3. 3.
    Liu, W.: Trustworthy service selection and composition - reducing the entropy of service-oriented web. In: 3rd International IEEE Conference on Industrial Informatics, Perth, Australia (2005)Google Scholar
  4. 4.
    Booth, D., Haas, H., McCabe, F., Newcomer, E.M.C., Ferris, C., Orchard, D.: Web services architecture. Technical report, W3C WG Note (2004),
  5. 5.
    Garofalakis, J., Panagis, Y., Sakkopoulos, E., Tsakalidis, A.: Contemporary web service discovery mechanisms. Journal of Web Engineering 5(3), 265–290 (2006)Google Scholar
  6. 6.
    Klusch, M., Fries, B., Sycara, K.: Automated semantic web service discovery with owls-mx. In: Proceedings of the fifth international joint conference on Autonomous agents and multiagent systems, Hakodate, Japan, pp. 915–922 (2006)Google Scholar
  7. 7.
    Sajjanhar, A., Hou, J., Zhang, Y.: Algorithm for web service matching. In: Yu, J.X., Lin, X., Lu, H., Zhang, Y. (eds.) APWeb 2004. LNCS, vol. 3007, pp. 665–670. Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Berry, M.W., Dumais, S.T., O’Brien, G.W.: Using linear algebra for intelligent information retrieval. SIAM Review 37(4), 573–595 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Li, Y., Liu, Y., Zhang, L., Li, G., Xie, B., Sun, J.: An exploratory study of web services on the internet. In: 2007 IEEE International Conference on Web Services (ICWS) (2007)Google Scholar
  10. 10.
    Manning, C., Schutze, H.: Foundations of statistical natural language processing. MIT Press, Cambridge (1999)zbMATHGoogle Scholar
  11. 11.
    Church, K., Gale, W.: Inverse document frequency (idf): A measure of deviations from poisson. In: Proceedings of the ACL 3rd Workshop on Very Large Corpora (1995)Google Scholar
  12. 12.
    Wong, W., Liu, W., Bennamoun, M.: Tree-traversing ant algorithm for term clustering based on featureless similarities. Journal on Data Mining and Knowledge Discovery 15(3), 349–381 (2007)zbMATHCrossRefGoogle Scholar
  13. 13.
    Liu, W., Weichselbraun, A., Scharl, A., Chang, E.: Semi-automatic ontology extension using spreading activation. Journal of Universal Knowledge Management (1), 50–58 (2005)Google Scholar
  14. 14.
    Cilibrasi, R., Vitanyi, P.: The google similarity distance. IEEE Transactions on Knowledge and Data Engineering 19(3), 370–383 (2007)CrossRefGoogle Scholar
  15. 15.
    Mandelbrot, B.: Information theory and psycholinguistics: A theory of word frequencies. MIT Press, MA (1967)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Wei Liu
    • 1
  • Wilson Wong
    • 1
  1. 1.School of Computer Science and Software EngineeringUniversity of Western AustraliaCrawley

Personalised recommendations