Skip to main content

Aquaporins in the Kidney

  • Chapter
Book cover Aquaporins

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 190))

The kidneys are the major determinants of body water and electrolyte composition. Thus, comprehending the mechanisms of water transport is essential to understanding mammalian kidney physiology and water balance. Because of its importance to human health, water permeability has been particularly well characterized in the mammalian kidney (Knepper and Burg 1983). Approximately, 180L day−1 of glomerular filtrate is generated in an average adult human; more than 90% of this is constitutively reabsorbed by the highly water-permeable proximal tubules and descending thin limbs of Henle' loop. The ascending thin limbs and thick limbs are relatively impermeable to water and empty into renal distal tubules and ultimately into the collecting ducts. The collecting ducts are extremely important clinically in water-balance disorders, because they are the chief site of regulated water re-absorption. Basal epithelial water permeability in collecting duct principal cells is low, but the water permeability can become exceedingly high when stimulated with arginine vasopressin (AVP, also known as antidiuretic hormone (ADH)). In this regard, the toad urinary bladder behaves like the collecting duct, and it has served as an important model of vasopressin-regulated water permeability. Stimulation of this epithelium with vasopressin produces an increase in water permeability in the apical membrane, which coincides with the redistribution of intracellular particles to the cell surface (Kachadorian et al. 1975, 1977; Wade and Kachadorian 1988). These particles were believed to contain water channels. The discovery of aquaporin-1 (AQP1) by Agre and colleagues (Preston et al. 1992; Preston and Agre 1991; Smith and Agre 1991) explained the long-standing biophysical question of how water specifically crosses biological membranes, and these studies led to the identification of a whole new family of membrane proteins, the aquaporin water channels. At present, at least eight aquaporins are expressed at distinct sites in the kidney, and four members of this family (AQP1-4) have been demonstrated to play pivotal roles in the physiology and pathophysiology for renal regulation of body water balance. In the present review, we will focus on regulation of renal aquaporins and in particular how regulation of AQP2 takes place. In addition, a number of inherited and acquired conditions characterized by urinary concentration defects as well as common diseases associated with severe water retention are discussed with relation to the role of aquaporins in regulation and dysregulation of renal water transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Advani RJ, Bae HR, Bock JB et al (1998) Seven novel mammalian SNARE proteins localize to distinct membrane compartments. J Biol Chem 273:10317–10324

    Article  PubMed  CAS  Google Scholar 

  • Agre P, King LS, Yasui M et al (2002) Aquaporin water channels — from atomic structure to clinical medicine. J Physiol 542:3–16

    Article  PubMed  CAS  Google Scholar 

  • Agre P, Preston GM, Smith BL et al (1993) Aquaporin CHIP: the archetypal molecular water channel. Am J Physiol 265:F463–F476

    PubMed  CAS  Google Scholar 

  • Anderson RJ, Gordon JA, Kim J et al (1982) Renal concentration defect following nonoliguric acute renal failure in the rat. Kidney Int 21:583–591

    Article  PubMed  CAS  Google Scholar 

  • Apostol E, Ecelbarger CA, Terris J et al (1997) Reduced renal medullary water channel expression in puromycin aminonucleoside-induced nephrotic syndrome. J Am Soc Nephrol 8:15–24

    PubMed  CAS  Google Scholar 

  • Arthus MF, Lonergan M, Crumley MJ et al (2000) Report of 33 novel AVPR2 mutations and analysis of 117 families with X-linked nephrogenic diabetes insipidus. J Am Soc Nephrol 11:1044–1054

    PubMed  CAS  Google Scholar 

  • Asahina Y, Izumi N, Enomoto N et al (1995) Increased gene expression of water channel in cir-rhotic rat kidneys. Hepatology 21:169–173

    Article  PubMed  CAS  Google Scholar 

  • Bajjalieh SM, Scheller RH (1995) The biochemistry of neurotransmitter secretion. J Biol Chem 270:1971–1974

    Article  PubMed  CAS  Google Scholar 

  • Barile M, Pisitkun T, Yu MJ et al (2005) Large scale protein identification in intracellu-lar aquaporin-2 vesicles from renal inner medullary collecting duct. Mol Cell Proteomics 4:1095–1106

    Article  PubMed  CAS  Google Scholar 

  • Bartter FC, Schwartz WB (1967) The syndrome of inappropriate secretion of antidiuretic hormone. Am J Med 42:790–806

    Article  PubMed  CAS  Google Scholar 

  • Bedford JJ, Leader JP, Jing R et al (2008) Amiloride restores renal medullary osmolytes in lithium-induced nephrogenic diabetes insipidus. Am J Physiol Renal Physiol 294:F812–F820

    Article  PubMed  CAS  Google Scholar 

  • Bichet DG (1996) Vasopressin receptors in health and disease. Kidney Int 49:1706–1711

    Article  PubMed  CAS  Google Scholar 

  • Bichet DG (2008) Vasopressin receptor mutations in nephrogenic diabetes insipidus. Semin Nephrol 28:245–251

    Article  PubMed  CAS  Google Scholar 

  • Birnbaumer M, Seibold A, Gilbert S et al (1992) Molecular cloning of the receptor for human antidiuretic hormone. Nature 357:333–335

    Article  PubMed  CAS  Google Scholar 

  • Bondy C, Chin E, Smith BL et al (1993) Developmental gene expression and tissue distribution of the CHIP28 water-channel protein. Proc Natl Acad Sci USA 90:4500–4504

    Article  PubMed  CAS  Google Scholar 

  • Boton R, Gaviria M, Batlle DC (1987) Prevalence, pathogenesis, and treatment of renal dysfunction associated with chronic lithium therapy. Am J Kidney Dis 10:329–345

    PubMed  CAS  Google Scholar 

  • Bouley R, Breton S, Sun T et al (2000) Nitric oxide and atrial natriuretic factor stimulate cGMP-dependent membrane insertion of aquaporin 2 in renal epithelial cells. J Clin Invest 106:1115–1126

    Article  PubMed  CAS  Google Scholar 

  • Bouley R, Hawthorn G, Russo LM et al (2006) Aquaporin 2 (AQP2) and vasopressin type 2 receptor (V2R) endocytosis in kidney epithelial cells: AQP2 is located in ‘endocytosis-resistant’ membrane domains after vasopressin treatment. Biol Cell 98:215–232

    Article  PubMed  CAS  Google Scholar 

  • Brown D, Verbavatz JM, Valenti G et al (1993a) Localization of the CHIP28 water channel in reabsorptive segments of the rat male reproductive tract. Eur J Cell Biol 61:264–273

    CAS  Google Scholar 

  • Brown EM, Gamba G, Riccardi D et al (1993b) Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature 366:575–580

    Article  CAS  Google Scholar 

  • Bustamante M, Hasler U, Leroy V et al (2008) Calcium-sensing receptor attenuates AVP-induced aquaporin-2 expression via a calmodulin-dependent mechanism. J Am Soc Nephrol 19:109–116

    Article  PubMed  CAS  Google Scholar 

  • Calakos N, Bennett MK, Peterson KE et al (1994) Protein-protein interactions contributing to the specificity of intracellular vesicular trafficking. Science 263:1146–1149

    Article  PubMed  CAS  Google Scholar 

  • Cheng X, Zhang H, Lee HL et al (2004) Cyclooxygenase-2 inhibitor preserves medullary aquaporin-2 expression and prevents polyuria after ureteral obstruction. J Urol 172:2387–2390

    Article  PubMed  CAS  Google Scholar 

  • Chou CL, Christensen BM, Frische S et al (2004) Non-muscle myosin II and myosin light chain kinase are downstream targets for vasopressin signaling in the renal collecting duct. J Biol Chem 279:49026–49035

    Article  PubMed  CAS  Google Scholar 

  • Chou CL, Ma T, Yang B et al (1998) Fourfold reduction of water permeability in inner medullary collecting duct of aquaporin-4 knockout mice. Am J Physiol 274:C549–C554

    PubMed  CAS  Google Scholar 

  • Chou CL, Yip KP, Michea L et al (2000) Regulation of aquaporin-2 trafficking by vasopressin in the renal collecting duct. Roles of ryanodine-sensitive Ca2+ stores and calmodulin. J Biol Chem 275:36839–36846

    CAS  Google Scholar 

  • Christensen BM, Kim YH, Kwon TH et al (2006) Lithium treatment induces a marked proliferation of primarily principal cells in rat kidney inner medullary collecting duct. Am J Physiol Renal Physiol 291:F39–F48

    Article  PubMed  CAS  Google Scholar 

  • Christensen BM, Marples D, Kim YH et al (2004) Changes in cellular composition of kidney collecting duct cells in rats with lithium-induced NDI. Am J Physiol Cell Physiol 286:C952–C964

    Article  PubMed  CAS  Google Scholar 

  • Christensen BM, Wang W, Frokiaer J et al (2003) Axial heterogeneity in basolateral AQP2 localization in rat kidney: effect of vasopressin. Am J Physiol Renal Physiol 284:F701–F717

    PubMed  CAS  Google Scholar 

  • Christensen BM, Zelenina M, Aperia A et al (2000) Localization and regulation of PKA-phosphorylated AQP2 in response to V(2)-receptor agonist/antagonist treatment. Am J Physiol Renal Physiol 278:F29–F42

    PubMed  CAS  Google Scholar 

  • Christensen BM, Marples D, Jensen UB et al (1998) Acute effects of vasopressin V2-receptor antagonist on kidney AQP2 expression and subcellular distribution. AJP - Renal Physiology 275:F285–F297

    CAS  Google Scholar 

  • Christensen S, Kusano E, Yusufi AN et al (1985) Pathogenesis of nephrogenic diabetes insipidus due to chronic administration of lithium in rats. J Clin Invest 75:1869–1879

    Article  PubMed  CAS  Google Scholar 

  • Cogan E, Abramow M (1986) Inhibition by lithium of the hydroosmotic action of vasopressin in the isolated perfused cortical collecting tubule of the rabbit. J Clin Invest 77:1507–1514

    Article  PubMed  CAS  Google Scholar 

  • Cogan E, Svoboda M, Abramow M (1987) Mechanisms of lithium-vasopressin interaction in rabbit cortical collecting tubule. Am J Physiol 252:F1080–F1087

    PubMed  CAS  Google Scholar 

  • Coleman RA, Wu DC, Liu J et al (2000) Expression of aquaporins in the renal connecting tubule. Am J Physiol Renal Physiol 279:F874–F883

    PubMed  CAS  Google Scholar 

  • Crawford JD, Kennedy GC (1959) Chlorothiazid in diabetes insipidus. Nature 183:891–892

    Article  PubMed  CAS  Google Scholar 

  • de Mattia F, Savelkoul PJ, Bichet DG et al (2004) A novel mechanism in recessive nephrogenic diabetes insipidus: wild-type aquaporin-2 rescues the apical membrane expression of intracel-lularly retained AQP2-P262L. Hum Mol Genet 13:3045–3056

    Article  PubMed  CAS  Google Scholar 

  • de Seigneux S, Nielsen J, Olesen ET et al (2007) Long-term aldosterone treatment induces decreased apical but increased basolateral expression of AQP2 in CCD of rat kidney. Am J Physiol Renal Physiol 293:F87–F99

    Article  PubMed  CAS  Google Scholar 

  • de Sousa RC, Grosso A (1979) Vanadate blocks cyclic AMP-induced stimulation of sodium and water transport in amphibian epithelia. Nature 279:803–804

    Article  PubMed  Google Scholar 

  • Deen PM, van Aubel RA, van Lieburg AF et al (1996) Urinary content of aquaporin 1 and 2 in nephrogenic diabetes insipidus. J Am Soc Nephrol 7:836–841

    PubMed  CAS  Google Scholar 

  • Deen PM, Verdijk MA, Knoers NV et al (1994a) Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine. Science 264:92–95

    Article  CAS  Google Scholar 

  • Deen PM, Weghuis DO, Sinke RJ et al (1994b) Assignment of the human gene for the water channel of renal collecting duct Aquaporin 2 (AQP2) to chromosome 12 region q12→q13. Cytogenet Cell Genet 66:260–262

    Article  CAS  Google Scholar 

  • DiBona DR (1983) Cytoplasmic involvement in ADH-mediated osmosis across toad urinary bladder. Am J Physiol 245:C297–C307

    PubMed  CAS  Google Scholar 

  • DiGiovanni SR, Nielsen S, Christensen EI et al (1994) Regulation of collecting duct water channel expression by vasopressin in Brattleboro rat. Proc Natl Acad Sci USA 91:8984–8988

    Article  PubMed  CAS  Google Scholar 

  • Ding GH, Franki N, Condeelis J et al (1991) Vasopressin depolymerizes F-actin in toad bladder epithelial cells. Am J Physiol 260:C9–C16

    PubMed  CAS  Google Scholar 

  • Ecelbarger CA, Chou CL, Lee AJ et al (1998) Escape from vasopressin-induced antidiuresis: role of vasopressin resistance of the collecting duct. Am J Physiol 274:F1161–F1166

    PubMed  CAS  Google Scholar 

  • Ecelbarger CA, Nielsen S, Olson BR et al (1997) Role of renal aquaporins in escape from vasopressin-induced antidiuresis in rat. J Clin Invest 99:1852–1863

    Article  PubMed  CAS  Google Scholar 

  • Ecelbarger CA, Terris J, Frindt G et al (1995) Aquaporin-3 water channel localization and regulation in rat kidney. Am J Physiol 269:F663–F672

    PubMed  CAS  Google Scholar 

  • Echevarria M, Windhager EE, Tate SS et al (1994) Cloning and expression of AQP3, a water channel from the medullary collecting duct of rat kidney. Proc Natl Acad Sci USA 91:10997–11001

    Article  PubMed  CAS  Google Scholar 

  • Elkjaer ML, Kwon TH, Wang W et al (2002) Altered expression of renal NHE3, TSC, BSC–1, and ENaC subunits in potassium-depleted rats. Am J Physiol Renal Physiol 283:F1376–F1388

    PubMed  CAS  Google Scholar 

  • Elkjaer ML, Nejsum LN, Gresz V et al (2001) Immunolocalization of aquaporin-8 in rat kidney, gastrointestinal tract, testis, and airways. Am J Physiol Renal Physiol 281:F1047–F1057

    PubMed  CAS  Google Scholar 

  • Fenton RA, Brond L, Nielsen S et al (2007) Cellular and subcellular distribution of the type-2 vasopressin receptor in the kidney. Am J Physiol Renal Physiol 293:F748–F760

    Article  PubMed  CAS  Google Scholar 

  • Fenton RA, Moeller HB (2008) Recent discoveries in vasopressin-regulated aquaporin-2 trafficking. Prog Brain Res 170:571–579

    Article  PubMed  CAS  Google Scholar 

  • Fenton RA, Moeller HB, Hoffert JD et al (2008) Acute regulation of aquaporin-2 phosphorylation at Ser-264 by vasopressin. Proc Natl Acad Sci USA 105:3134–3139

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Llama P, Andrews P, Ecelbarger CA et al (1998a) Concentrating defect in experimental nephrotic syndrome: altered expression of aquaporins and thick ascending limb Na+ transporters. Kidney Int 54:170–179

    Article  Google Scholar 

  • Fernandez-Llama P, Andrews P, Nielsen S et al (1998b) Impaired aquaporin and urea transporter expression in rats with adriamycin-induced nephrotic syndrome. Kidney Int 53:1244–1253

    Article  Google Scholar 

  • Fernandez-Llama P, Andrews P, Turner R et al (1999a) Decreased abundance of collecting duct aquaporins in post-ischemic renal failure in rats. J Am Soc Nephrol 10:1658–1668

    Google Scholar 

  • Fernandez-Llama P, Jimenez W, Bosch-Marce M et al (2000) Dysregulation of renal aquaporins and Na-Cl cotransporter in CCl4-induced cirrhosis. Kidney Int 58:216–228

    Article  Google Scholar 

  • Fernandez-Llama P, Turner R, Dibona G et al (1999b) Renal expression of aquaporins in liver cirrhosis induced by chronic common bile duct ligation in rats. J Am Soc Nephrol 10:1950–1957

    Google Scholar 

  • Flear CT, Gill GV, Burn J (1981) Hyponatraemia: mechanisms and management. Lancet 2:26–31

    Article  PubMed  CAS  Google Scholar 

  • Foster LJ, Yeung B, Mohtashami M et al (1998) Binary interactions of the SNARE proteins syntaxin-4, SNAP23, and VAMP-2 and their regulation by phosphorylation. Biochemistry 37:11089–11096

    Article  PubMed  CAS  Google Scholar 

  • Franki N, Macaluso F, Schubert W et al (1995) Water channel-carrying vesicles in the rat IMCD contain cellubrevin. Am J Physiol 269:C797–C801

    PubMed  CAS  Google Scholar 

  • Frigeri A, Gropper MA, Turck CW et al (1995) Immunolocalization of the mercurial-insensitive water channel and glycerol intrinsic protein in epithelial cell plasma membranes. Proc Natl Acad Sci USA 92:4328–4331

    Article  PubMed  CAS  Google Scholar 

  • Frokiaer J, Christensen BM, Marples D et al (1997) Downregulation of aquaporin-2 parallels changes in renal water excretion in unilateral ureteral obstruction. Am J Physiol 273:F213–F223

    PubMed  CAS  Google Scholar 

  • Frokiaer J, Marples D, Knepper MA et al (1996) Bilateral ureteral obstruction downregu-lates expression of vasopressin-sensitive AQP-2 water channel in rat kidney. Am J Physiol 270:F657–F668

    PubMed  CAS  Google Scholar 

  • Frokiaer J, Marples D, Valtin H et al (1999) Low aquaporin-2 levels in polyuric DI +/+ severe mice with constitutively high cAMP-phosphodiesterase activity. Am J Physiol 276:F179–F190

    PubMed  CAS  Google Scholar 

  • Fujita N, Ishikawa SE, Sasaki S et al (1995) Role of water channel AQP-CD in water retention in SIADH and cirrhotic rats. Am J Physiol 269:F926–F931

    PubMed  CAS  Google Scholar 

  • Fujiwara TM, Bichet DG (2005) Molecular biology of hereditary diabetes insipidus. J Am Soc Nephrol 16:2836–2846

    Article  PubMed  CAS  Google Scholar 

  • Fushimi K, Sasaki S, Marumo F (1997) Phosphorylation of serine 256 is required for cAMP-dependent regulatory exocytosis of the aquaporin-2 water channel. J Biol Chem 272:14800–14804

    Article  PubMed  CAS  Google Scholar 

  • Fushimi K, Uchida S, Hara Y et al (1993) Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature 361:549–552

    Article  PubMed  CAS  Google Scholar 

  • Gheorghiade M, Niazi I, Ouyang J et al (2003) Vasopressin V2-receptor blockade with tolvaptan in patients with chronic heart failure: results from a double-blind, randomized trial. Circulation 107:2690–2696

    Article  PubMed  CAS  Google Scholar 

  • Gines P, Berl T, Bernardi M et al (1998) Hyponatremia in cirrhosis: from pathogenesis to treatment. Hepatology 28:851–864

    Article  PubMed  CAS  Google Scholar 

  • Gong H, Wang W, Kwon TH et al (2003) Reduced renal expression of AQP2, p-AQP2 and AQP3 in haemorrhagic shock-induced acute renal failure. Nephrol Dial Transplant 18:2551–2559

    Article  PubMed  CAS  Google Scholar 

  • Gong H, Wang W, Kwon TH et al (2004) EPO and alpha-MSH prevent ischemia/reperfusion-induced down-regulation of AQPs and sodium transporters in rat kidney. Kidney Int 66: 683–695

    Article  PubMed  CAS  Google Scholar 

  • Gresz V, Kwon TH, Hurley PT et al (2001) Identification and localization of aquaporin water channels in human salivary glands. Am J Physiol Gastrointest Liver Physiol 281:G247–G254

    PubMed  CAS  Google Scholar 

  • Hanley MJ (1980) Isolated nephron segments in a rabbit model of ischemic acute renal failure. Am J Physiol 239:F17–F23

    PubMed  CAS  Google Scholar 

  • Harris HW, Jr., Zeidel ML, Jo I et al (1994) Characterization of purified endosomes containing the antidiuretic hormone-sensitive water channel from rat renal papilla. J Biol Chem 269:11993–12000

    PubMed  CAS  Google Scholar 

  • Hasegawa H, Lian SC, Finkbeiner WE et al (1994a) Extrarenal tissue distribution of CHIP28 water channels by in situ hybridization and antibody staining. Am J Physiol 266:C893–C903

    CAS  Google Scholar 

  • Hasegawa H, Ma T, Skach W et al (1994b) Molecular cloning of a mercurial-insensitive water channel expressed in selected water-transporting tissues. J Biol Chem 269:5497–5500

    CAS  Google Scholar 

  • Hayashi M, Sasaki S, Tsuganezawa H et al (1994) Expression and distribution of aquaporin of collecting duct are regulated by vasopressin V2 receptor in rat kidney. J Clin Invest 94:1778–1783

    Article  PubMed  CAS  Google Scholar 

  • Hazama A, Kozono D, Guggino WB et al (2002) Ion permeation of AQP6 water channel protein. Single channel recordings after Hg2+ activation. J Biol Chem 277:29224–29230

    Article  PubMed  CAS  Google Scholar 

  • Henderson IW, McKeever A, Kenyon CJ (1979) Captopril (SQ 14225) depresses drinking and aldosterone in rats lacking vasopressin. Nature 281:569–570

    Article  PubMed  CAS  Google Scholar 

  • Henn V, Edemir B, Stefan E et al (2004) Identification of a novel A-kinase anchoring protein 18 isoform and evidence for its role in the vasopressin-induced aquaporin-2 shuttle in renal principal cells. J Biol Chem 279:26654–26665

    Article  PubMed  CAS  Google Scholar 

  • Hober C, Vantyghem MC, Racadot A et al (1992) Normal hemodynamic and coagulation responses to 1-deamino-8-D-arginine vasopressin in a case of lithium-induced nephrogenic diabetes in-sipidus. Results of treatment by a prostaglandin synthesis inhibitor (indomethacin). Horm Res 37:190–195

    PubMed  CAS  Google Scholar 

  • Hoffert JD, Nielsen J, Yu MJ et al (2007) Dynamics of aquaporin-2 serine-261 phosphorylation in response to short-term vasopressin treatment in collecting duct. Am J Physiol Renal Physiol 292:F691–F700

    Article  PubMed  CAS  Google Scholar 

  • Hoffert JD, Pisitkun T, Wang G et al (2006) Quantitative phosphoproteomics of vasopressin-sensitive renal cells: regulation of aquaporin-2 phosphorylation at two sites. Proc Natl Acad Sci USA 103:7159–7164

    Article  PubMed  CAS  Google Scholar 

  • Hozawa S, Holtzman EJ, Ausiello DA (1996) cAMP motifs regulating transcription in the aqua-porin 2 gene. Am J Physiol 270:C1695–C1702

    PubMed  CAS  Google Scholar 

  • Ikeda M, Beitz E, Kozono D et al (2002) Characterization of aquaporin-6 as a nitrate channel in mammalian cells. Requirement of pore-lining residue threonine 63. J Biol Chem 277:39873–39879

    CAS  Google Scholar 

  • Inoue T, Nielsen S, Mandon B et al (1998) SNAP-23 in rat kidney: colocalization with aquaporin-2 in collecting duct vesicles. Am J Physiol 275:F752–F760

    PubMed  CAS  Google Scholar 

  • Ishibashi K, Imai M, Sasaki S (2000) Cellular localization of aquaporin 7 in the rat kidney. Exp Nephrol 8:252–257

    Article  PubMed  CAS  Google Scholar 

  • Ishibashi K, Kuwahara M, Gu Y et al (1997a) Cloning and functional expression of a new water channel abundantly expressed in the testis permeable to water, glycerol, and urea. J Biol Chem 272:20782–20786

    Article  CAS  Google Scholar 

  • Ishibashi K, Sasaki S, Fushimi K et al (1994) Molecular cloning and expression of a member of the aquaporin family with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cells. Proc Natl Acad Sci USA 91:6269–6273

    Article  PubMed  CAS  Google Scholar 

  • Ishibashi K, Sasaki S, Fushimi K et al (1997b) Immunolocalization and effect of dehydration on AQP3, a basolateral water channel of kidney collecting ducts. Am J Physiol 272:F235–F241

    CAS  Google Scholar 

  • Jensen AM, Li C, Praetorius HA et al (2006) Angiotensin II mediates downregulation of aquaporin water channels and key renal sodium transporters in response to urinary tract obstruction. Am J Physiol Renal Physiol 291:F1021–F1032

    Article  PubMed  CAS  Google Scholar 

  • Jonassen TE, Nielsen S, Christensen S et al (1998) Decreased vasopressin-mediated renal water reabsorption in rats with compensated liver cirrhosis. Am J Physiol 275:F216–F225

    PubMed  CAS  Google Scholar 

  • Jonassen TE, Promeneur D, Christensen S et al (2000) Decreased vasopressin-mediated renal water reabsorption in rats with chronic aldosterone-receptor blockade. Am J Physiol Renal Physiol 278:F246–F256

    PubMed  CAS  Google Scholar 

  • Kachadorian WA, Ellis SJ, Muller J (1979) Possible roles for microtubules and microfilaments in ADH action on toad urinary bladder. Am J Physiol 236:F14–F20

    PubMed  CAS  Google Scholar 

  • Kachadorian WA, Levine SD, Wade JB et al (1977) Relationship of aggregated intramembra-nous particles to water permeability in vasopressin-treated toad urinary bladder. J Clin Invest 59:576–581

    Article  PubMed  CAS  Google Scholar 

  • Kachadorian WA, Wade JB, DiScala VA (1975) Vasopressin: induced structural change in toad bladder luminal membrane. Science 190:67–69

    Article  PubMed  CAS  Google Scholar 

  • Kamsteeg EJ, Bichet DG, Konings IB et al (2003) Reversed polarized delivery of an aquaporin-2 mutant causes dominant nephrogenic diabetes insipidus. J Cell Biol 163:1099–1109

    Article  PubMed  CAS  Google Scholar 

  • Kamsteeg EJ, Heijnen I, van Os CH et al (2000) The subcellular localization of an aquaporin-2 tetramer depends on the stoichiometry of phosphorylated and nonphosphorylated monomers. J Cell Biol 151:919–930

    Article  PubMed  CAS  Google Scholar 

  • Kamsteeg EJ, Hendriks G, Boone M et al (2006) Short-chain ubiquitination mediates the regulated endocytosis of the aquaporin-2 water channel. Proc Natl Acad Sci USA 103:18344–18349

    Article  PubMed  CAS  Google Scholar 

  • Kanno K, Sasaki S, Hirata Y et al (1995) Urinary excretion of aquaporin-2 in patients with diabetes insipidus. N Engl J Med 332:1540–1545

    Article  PubMed  CAS  Google Scholar 

  • Katsura T, Ausiello DA, Brown D (1996) Direct demonstration of aquaporin-2 water channel recycling in stably transfected LLC-PK1 epithelial cells. Am J Physiol 270:F548–F553

    PubMed  CAS  Google Scholar 

  • Katsura T, Gustafson CE, Ausiello DA et al (1997) Protein kinase A phosphorylation is involved in regulated exocytosis of aquaporin-2 in transfected LLC-PK1 cells. Am J Physiol 272:F817–F822

    PubMed  CAS  Google Scholar 

  • Kim GH, Ecelbarger CA, Mitchell C et al (1999) Vasopressin increases Na-K-2Cl cotransporter expression in thick ascending limb of Henle' loop. Am J Physiol 276:F96–F103

    PubMed  CAS  Google Scholar 

  • Kim GH, Lee JW, Oh YK et al (2004a) Antidiuretic effect of hydrochlorothiazide in lithium-induced nephrogenic diabetes insipidus is associated with upregulation of aquaporin-2, Na-Cl co-transporter, and epithelial sodium channel. J Am Soc Nephrol 15:2836–2843

    Article  CAS  Google Scholar 

  • Kim SW, Schou UK, Peters CD et al (2005) Increased apical targeting of renal epithelial sodium channel subunits and decreased expression of type 2 11beta-hydroxysteroid dehydrogenase in rats with CCl4-induced decompensated liver cirrhosis. J Am Soc Nephrol 16:3196–3210

    Article  PubMed  CAS  Google Scholar 

  • Kim SW, Wang W, Nielsen J et al (2004b) Increased expression and apical targeting of renal ENaC subunits in puromycin aminonucleoside-induced nephrotic syndrome in rats. Am J Physiol Renal Physiol 286:F922–F935

    Article  CAS  Google Scholar 

  • Kim YH, Kwon TH, Christensen BM et al (2003) Altered expression of renal acid-base transporters in rats with lithium-induced NDI. Am J Physiol Renal Physiol 285:F1244–F1257

    PubMed  CAS  Google Scholar 

  • Kishore BK, Wade JB, Schorr K et al (1998) Expression of synaptotagmin VIII in rat kidney. Am J Physiol 275:F131–F142

    PubMed  CAS  Google Scholar 

  • Klein PS, Melton DA (1996) A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci USA 93:8455–8459

    Article  PubMed  CAS  Google Scholar 

  • Klussmann E, Maric K, Wiesner B et al (1999) Protein kinase A anchoring proteins are required for vasopressin-mediated translocation of aquaporin-2 into cell membranes of renal principal cells. J Biol Chem 274:4934–4938

    Article  PubMed  CAS  Google Scholar 

  • Knepper M, Burg M (1983) Organization of nephron function. Am J Physiol 244:F579–F589

    PubMed  CAS  Google Scholar 

  • Knepper MA, Nielsen S, Chou CL et al (1994) Mechanism of vasopressin action in the renal collecting duct. Semin Nephrol 14:302–321

    PubMed  CAS  Google Scholar 

  • Kotnik P, Nielsen J, Kwon TH et al (2005) Altered expression of COX-1, COX-2, and mPGES in rats with nephrogenic and central diabetes insipidus. Am J Physiol Renal Physiol 288:F1053–F1068

    Article  PubMed  CAS  Google Scholar 

  • Kuriyama H, Kawamoto S, Ishida N et al (1997) Molecular cloning and expression of a novel human aquaporin from adipose tissue with glycerol permeability. Biochem Biophys Res Commun 241:53–58

    Article  PubMed  CAS  Google Scholar 

  • Kuwahara M, Fushimi K, Terada Y et al (1995) cAMP-dependent phosphorylation stimulates water permeability of aquaporin-collecting duct water channel protein expressed in Xenopus oocytes. J Biol Chem 270:10384–10387

    Article  PubMed  CAS  Google Scholar 

  • Kuwahara M, Iwai K, Ooeda T et al (2001) Three families with autosomal dominant nephro-genic diabetes insipidus caused by aquaporin-2 mutations in the C-terminus. Am J Hum Genet 69:738–748

    Article  PubMed  CAS  Google Scholar 

  • Kuwahara M, Verkman AS (1989) Pre-steady-state analysis of the turn-on and turn-off of water permeability in the kidney collecting tubule. J Membr Biol 110:57–65

    Article  PubMed  CAS  Google Scholar 

  • Kwon TH, Frokiaer J, Fernandez-Llama P et al (1999a) Reduced abundance of aquaporins in rats with bilateral ischemia-induced acute renal failure: prevention by alpha-MSH. Am J Physiol 277:F413–F427

    CAS  Google Scholar 

  • Kwon TH, Frokiaer J, Fernandez-Llama P et al (1999b) Altered expression of Na transporters NHE-3, NaPi-II, Na-K-ATPase, BSC-1, and TSC in CRF rat kidneys. Am J Physiol F257–F270

    Google Scholar 

  • Kwon TH, Frokiaer J, Knepper MA et al (1998) Reduced AQP1, −2, and −3 levels in kidneys of rats with CRF induced by surgical reduction in renal mass. Am J Physiol 275:F724–F741

    PubMed  CAS  Google Scholar 

  • Kwon TH, Hager H, Nejsum LN et al (2001) Physiology and pathophysiology of renal aquaporins. Semin Nephrol 21:231–238

    Article  PubMed  CAS  Google Scholar 

  • Kwon TH, Laursen UH, Marples D et al (2000) Altered expression of renal AQPs and Na(+) transporters in rats with lithium-induced NDI. Am J Physiol Renal Physiol 279:F552–F564

    PubMed  CAS  Google Scholar 

  • Kwon TH, Nielsen J, Knepper MA et al (2005) Angiotensin II AT1 receptor blockade decreases vasopressin-induced water reabsorption and AQP2 levels in NaCl-restricted rats. Am J Physiol Renal Physiol 288:F673–F684

    Article  PubMed  CAS  Google Scholar 

  • Kwon TH, Nielsen J, Masilamani S et al (2002) Regulation of collecting duct AQP3 expression: response to mineralocorticoid. Am J Physiol Renal Physiol 283:F1403–F1421

    PubMed  CAS  Google Scholar 

  • Lai KN, Li FK, Lan HY et al (2001) Expression of aquaporin-1 in human peritoneal mesothelial cells and its upregulation by glucose in vitro. J Am Soc Nephrol 12:1036–1045

    PubMed  CAS  Google Scholar 

  • Lande MB, Jo I, Zeidel ML et al (1996) Phosphorylation of aquaporin-2 does not alter the membrane water permeability of rat papillary water channel-containing vesicles. J Biol Chem 271:5552–5557

    Article  PubMed  CAS  Google Scholar 

  • Lankford SP, Chou CL, Terada Y et al (1991) Regulation of collecting duct water permeability independent of cAMP-mediated AVP response. Am J Physiol 261:F554–F566

    PubMed  CAS  Google Scholar 

  • Laursen UH, Pihakaski-Maunsbach K, Kwon TH et al (2004) Changes of rat kidney AQP2 and Na,K-ATPase mRNA expression in lithium-induced nephrogenic diabetes insipidus. Nephron Exp Nephrol 97:e1–e16

    Article  PubMed  CAS  Google Scholar 

  • Lee YJ, Song IK, Jang KJ et al (2007) Increased AQP2 targeting in primary cultured IMCD cells in response to angiotensin II through AT1 receptor. Am J Physiol Renal Physiol 292:F340–F350

    Article  PubMed  CAS  Google Scholar 

  • Levy M, Wexler MJ (1987) Hepatic denervation alters first-phase urinary sodium excretion in dogs with cirrhosis. Am J Physiol 253:F664–F671

    PubMed  CAS  Google Scholar 

  • Li C, Wang W, Kwon TH et al (2001) Downregulation of AQP1, –−2, and −3 after ureteral obstruction is associated with a long-term urine-concentrating defect. Am J Physiol Renal Physiol 281:F163–F171

    PubMed  CAS  Google Scholar 

  • Li C, Wang W, Kwon TH et al (2003) Altered expression of major renal Na transporters in rats with bilateral ureteral obstruction and release of obstruction. Am J Physiol Renal Physiol 285:F889–F901

    PubMed  CAS  Google Scholar 

  • Li Y, Shaw S, Kamsteeg EJ et al (2006) Development of lithium-induced nephrogenic diabetes insipidus is dissociated from adenylyl cyclase activity. J Am Soc Nephrol 17:1063–1072

    Article  PubMed  CAS  Google Scholar 

  • Liebenhoff U, Rosenthal W (1995) Identification of Rab3-, Rab5a- and synaptobrevin II-like proteins in a preparation of rat kidney vesicles containing the vasopressin-regulated water channel. FEBS Lett 365:209–213

    Article  PubMed  CAS  Google Scholar 

  • Liu K, Kozono D, Kato Y et al (2005) Conversion of aquaporin 6 from an anion channel to a water-selective channel by a single amino acid substitution. Proc Natl Acad Sci USA 102:2192–2197

    Article  PubMed  CAS  Google Scholar 

  • Loonen AJ, Knoers NV, van Os CH et al (2008) Aquaporin 2 mutations in nephrogenic diabetes insipidus. Semin Nephrol 28:252–265

    Article  PubMed  CAS  Google Scholar 

  • Lorenz D, Krylov A, Hahm D et al (2003) Cyclic AMP is sufficient for triggering the exocytic recruitment of aquaporin-2 in renal epithelial cells. EMBO Rep 4:88–93

    Article  PubMed  CAS  Google Scholar 

  • Lu H, Sun TX, Bouley R et al (2004) Inhibition of endocytosis causes phosphorylation (S256)-independent plasma membrane accumulation of AQP2. Am J Physiol Renal Physiol 286:F233–F243

    Article  PubMed  CAS  Google Scholar 

  • Lu HA, Sun TX, Matsuzaki T et al (2007) Heat shock protein 70 interacts with aquaporin-2 and regulates its trafficking. J Biol Chem 282:28721–28732

    Article  PubMed  CAS  Google Scholar 

  • Ma T, Frigeri A, Hasegawa H et al (1994) Cloning of a water channel homolog expressed in brain meningeal cells and kidney collecting duct that functions as a stilbene-sensitive glycerol transporter. J Biol Chem 269:21845–21849

    PubMed  CAS  Google Scholar 

  • Ma T, Song Y, Yang B et al (2000) Nephrogenic diabetes insipidus in mice lacking aquaporin-3 water channels. Proc Natl Acad Sci USA 97:4386–4391

    Article  PubMed  CAS  Google Scholar 

  • Ma T, Yang B, Gillespie A et al (1997) Generation and phenotype of a transgenic knockout mouse lacking the mercurial-insensitive water channel aquaporin-4. J Clin Invest 100:957–962

    Article  PubMed  CAS  Google Scholar 

  • Ma T, Yang B, Gillespie A et al (1998) Severely impaired urinary concentrating ability in trans-genic mice lacking aquaporin-1 water channels. J Biol Chem 273:4296–4299

    Article  PubMed  CAS  Google Scholar 

  • Mandon B, Chou CL, Nielsen S et al (1996) Syntaxin-4 is localized to the apical plasma membrane of rat renal collecting duct cells: possible role in aquaporin-2 trafficking. J Clin Invest 98:906–913

    Article  PubMed  CAS  Google Scholar 

  • Mandon B, Nielsen S, Kishore BK et al (1997) Expression of syntaxins in rat kidney. Am J Physiol 273:F718–F730

    PubMed  CAS  Google Scholar 

  • Marples D, Barber B, Taylor A (1996a) Effect of a dynein inhibitor on vasopressin action in toad urinary bladder. J Physiol 490 (Part 3):767–774

    Google Scholar 

  • Marples D, Christensen S, Christensen EI et al (1995a) Lithium-induced downregulation of aquaporin-2 water channel expression in rat kidney medulla. J Clin Invest 95:1838–1845

    Article  CAS  Google Scholar 

  • Marples D, Frokiaer J, Dorup J et al (1996b) Hypokalemia-induced downregulation of aquaporin-2 water channel expression in rat kidney medulla and cortex. J Clin Invest 97:1960–1968

    Article  CAS  Google Scholar 

  • Marples D, Knepper MA, Christensen EI et al (1995b) Redistribution of aquaporin-2 water channels induced by vasopressin in rat kidney inner medullary collecting duct. Am J Physiol 269:C655–C664

    CAS  Google Scholar 

  • Marples D, Schroer TA, Ahrens N et al (1998) Dynein and dynactin colocalize with AQP2 water channels in intracellular vesicles from kidney collecting duct. Am J Physiol 274:F384–F394

    PubMed  CAS  Google Scholar 

  • Marr N, Bichet DG, Lonergan M et al (2002) Heteroligomerization of an aquaporin-2 mutant with wild-type aquaporin-2 and their misrouting to late endosomes/lysosomes explains dominant nephrogenic diabetes insipidus. Hum Mol Genet 11:779–

    Article  PubMed  CAS  Google Scholar 

  • Martin PY, Abraham WT, Lieming X et al (1999) Selective V2-receptor vasopressin antagonism decreases urinary aquaporin-2 excretion in patients with chronic heart failure. J Am Soc Nephrol 10:2165–2170

    PubMed  CAS  Google Scholar 

  • Matsumura Y, Uchida S, Rai T et al (1997) Transcriptional regulation of aquaporin-2 water channel gene by cAMP. J Am Soc Nephrol 8:861–867

    PubMed  CAS  Google Scholar 

  • McDill BW, Li SZ, Kovach PA et al (2006) Congenital progressive hydronephrosis (cph) is caused by an S256L mutation in aquaporin-2 that affects its phosphorylation and apical membrane accumulation. Proc Natl Acad Sci USA 103:6952–6957

    Article  PubMed  CAS  Google Scholar 

  • Morishita Y, Matsuzaki T, Hara-chikuma M et al (2005) Disruption of aquaporin-11 produces polycystic kidneys following vacuolization of the proximal tubule. Mol Cell Biol 25:7770–7779

    Article  PubMed  CAS  Google Scholar 

  • Mouillac B, Chini B, Balestre MN et al (1995) The binding site of neuropeptide vasopressin V1a receptor. Evidence for a major localization within transmembrane regions. J Biol Chem 270:25771–25777

    CAS  Google Scholar 

  • Mulders SM, Bichet DG, Rijss JP et al (1998) An aquaporin-2 water channel mutant which causes autosomal dominant nephrogenic diabetes insipidus is retained in the Golgi complex. J Clin Invest 102:57–66

    Article  PubMed  CAS  Google Scholar 

  • Muller J, Kachadorian WA (1984) Aggregate-carrying membranes during ADH stimulation and washout in toad bladder. Am J Physiol 247:C90–C98

    PubMed  CAS  Google Scholar 

  • Murer L, Addabbo F, Carmosino M et al (2004) Selective decrease in urinary aquaporin 2 and increase in prostaglandin E2 excretion is associated with postobstructive polyuria in human congenital hydronephrosis. J Am Soc Nephrol 15:2705–2712

    Article  PubMed  CAS  Google Scholar 

  • Murillo-Carretero MI, Ilundain AA, Echevarria M (1999) Regulation of aquaporin mRNA expression in rat kidney by water intake. J Am Soc Nephrol 10:696–703

    Google Scholar 

  • Nejsum LN, Elkjaer M, Hager H et al (2000) Localization of aquaporin-7 in rat and mouse kidney using RT-PCR, immunoblotting, and immunocytochemistry. Biochem Biophys Res Commun 277:164–170

    Article  PubMed  CAS  Google Scholar 

  • Nejsum LN, Zelenina M, Aperia A et al (2005) Bidirectional regulation of AQP2 trafficking and recycling: involvement of AQP2-S256 phosphorylation. Am J Physiol Renal Physiol 288:F930–F938

    Article  PubMed  CAS  Google Scholar 

  • Nielsen J, Hoffert JD, Knepper MA et al (2008a) Proteomic analysis of lithium-induced nephro-genic diabetes insipidus: mechanisms for aquaporin 2 down-regulation and cellular proliferation. Proc Natl Acad Sci USA 105:3634–3639

    Article  CAS  Google Scholar 

  • Nielsen J, Kwon TH, Christensen BM et al (2008b) Dysregulation of renal aquaporins and epithelial sodium channel in lithium-induced nephrogenic diabetes insipidus. Semin Nephrol 28:227–244

    Article  CAS  Google Scholar 

  • Nielsen J, Kwon TH, Praetorius J et al (2006) Aldosterone increases urine production and decreases apical AQP2 expression in rats with diabetes insipidus. Am J Physiol Renal Physiol 290:F438–F449

    Article  PubMed  CAS  Google Scholar 

  • Nielsen J, Kwon TH, Praetorius J et al (2003) Segment-specific ENaC downregulation in kidney of rats with lithium-induced NDI. Am J Physiol Renal Physiol 285:F1198–F1209

    PubMed  CAS  Google Scholar 

  • Nielsen S, Chou CL, Marples D et al (1995a) Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc Natl Acad Sci USA 92:1013–1017

    Article  CAS  Google Scholar 

  • Nielsen S, DiGiovanni SR, Christensen EI et al (1993a) Cellular and subcellular immunolo-calization of vasopressin-regulated water channel in rat kidney. Proc Natl Acad Sci USA 90:11663–11667

    Article  CAS  Google Scholar 

  • Nielsen S, Frokiaer J, Marples D et al (2002) Aquaporins in the kidney: from molecules to medicine. Physiol Rev 82:205–244

    PubMed  CAS  Google Scholar 

  • Nielsen S, Kwon TH, Christensen BM et al (1999) Physiology and pathophysiology of renal aqua-porins. J Am Soc Nephrol 10:647–663

    PubMed  CAS  Google Scholar 

  • Nielsen S, Kwon TH, Frokiaer J et al (2007) Regulation and dysregulation of aquaporins in water balance disorders. J Intern Med 261:53–64

    Article  PubMed  CAS  Google Scholar 

  • Nielsen S, Kwon TH, Dimke H et al (2008c) Aqauporin water channels in mammalian kidney. In Alpern RJ, Hebert SC (ed) The kidney, 4th edn. Elsevier, San Diego

    Google Scholar 

  • Nielsen S, Kwon TH, Frokiaer J et al (2000) Key roles of renal aquaporins in water balance and water-balance disorders. News Physiol Sci 15:136–143

    PubMed  CAS  Google Scholar 

  • Nielsen S, Marples D, Birn H et al (1995b) Expression of VAMP-2-like protein in kidney collecting duct intracellular vesicles. Colocalization with aquaporin-2 water channels. J Clin Invest 96:1834–1844

    CAS  Google Scholar 

  • Nielsen S, Pallone T, Smith BL et al (1995c) Aquaporin-1 water channels in short and long loop descending thin limbs and in descending vasa recta in rat kidney. Am J Physiol 268:F1023–F1037

    CAS  Google Scholar 

  • Nielsen S, Smith BL, Christensen EI et al (1993b) Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proc Natl Acad Sci USA 90:7275–7279

    Article  CAS  Google Scholar 

  • Nielsen S, Smith BL, Christensen EI et al (1993c) CHIP28 water channels are localized in consti-tutively water-permeable segments of the nephron. J Cell Biol 120:371–383

    Article  CAS  Google Scholar 

  • Nielsen S, Terris J, Andersen D et al (1997) Congestive heart failure in rats is associated with increased expression and targeting of aquaporin-2 water channel in collecting duct. Proc Natl Acad Sci USA 94:5450–5455

    Article  PubMed  CAS  Google Scholar 

  • Norregaard R, Jensen BL, Li C et al (2005) COX-2 inhibition prevents downregulation of key renal water and sodium transport proteins in response to bilateral ureteral obstruction. Am J Physiol Renal Physiol 289: F322–F333

    Article  PubMed  CAS  Google Scholar 

  • Norregaard R, Jensen BL, Topcu SO et al (2006) Cyclooxygenase type 2 is increased in obstructed rat and human ureter and contributes to pelvic pressure increase after obstruction. Kidney Int 70:872–881

    Article  PubMed  CAS  Google Scholar 

  • Novak A, Dedhar S (1999) Signaling through beta-catenin and Lef/Tcf. Cell Mol Life Sci 56:523–537

    Article  PubMed  CAS  Google Scholar 

  • Pallone TL, Turner MR, Edwards A et al (2003) Countercurrent exchange in the renal medulla. Am J Physiol Regul Integr Comp Physiol 284:R1153–R1175

    PubMed  CAS  Google Scholar 

  • Pearl M, Taylor A (1983) Actin filaments and vasopressin-stimulated water flow in toad urinary bladder. Am J Physiol 245:C28–C39

    PubMed  CAS  Google Scholar 

  • Pevsner J, Hsu SC, Braun JE et al (1994) Specificity and regulation of a synaptic vesicle docking complex. Neuron 13:353–361

    Article  PubMed  CAS  Google Scholar 

  • Phillips ME, Taylor A (1989) Effect of nocodazole on the water permeability response to vaso-pressin in rabbit collecting tubules perfused in vitro. J Physiol 411:529–544

    PubMed  CAS  Google Scholar 

  • Phillips ME, Taylor A (1992) Effect of colcemid on the water permeability response to vasopressin in isolated perfused rabbit collecting tubules. J Physiol 456:591–608

    PubMed  CAS  Google Scholar 

  • Pisitkun T, Shen RF, Knepper MA (2004) Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci USA 101:13368–13373

    Article  PubMed  CAS  Google Scholar 

  • Preston GM, Agre P (1991) Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc Natl Acad Sci USA 88:11110–11114

    Article  PubMed  CAS  Google Scholar 

  • Preston GM, Carroll TP, Guggino WB et al (1992) Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256:385–387

    Article  PubMed  CAS  Google Scholar 

  • Procino G, Carmosino M, Marin O et al (2003) Ser-256 phosphorylation dynamics of aqua-porin 2 during maturation from the ER to the vesicular compartment in renal cells. FASEB J 17:1886–1888

    PubMed  CAS  Google Scholar 

  • Procino G, Carmosino M, Tamma G et al (2004) Extracellular calcium antagonizes forskolin-induced aquaporin 2 trafficking in collecting duct cells. Kidney Int 66:2245–2255

    Article  PubMed  CAS  Google Scholar 

  • Promeneur D, Kwon TH, Frokiaer J et al (2000) Vasopressin V(2)-receptor-dependent regulation of AQP2 expression in Brattleboro rats. Am J Physiol Renal Physiol 279:F370–F382

    PubMed  CAS  Google Scholar 

  • Puliyanda DP, Ward DT, Baum MA et al (2003) Calpain-mediated AQP2 proteolysis in inner medullary collecting duct. Biochem Biophys Res Commun 303:52–58

    Article  PubMed  CAS  Google Scholar 

  • Radomski JL, Fuyathn, Nelson AA et al (1950) The toxic effects, excretion and distribution of lithium chloride. J Pharmacol Exp Ther 100:429–444

    PubMed  CAS  Google Scholar 

  • Rao R, Zhang MZ, Zhao M et al (2005) Lithium treatment inhibits renal GSK-3 activity and promotes cyclooxygenase 2-dependent polyuria. Am J Physiol Renal Physiol 288:F642–F649

    Article  PubMed  CAS  Google Scholar 

  • Riccardi D, Hall AE, Chattopadhyay N et al (1998) Localization of the extracellular Ca2+/ polyvalent cation-sensing protein in rat kidney. Am J Physiol 274:F611–F622

    PubMed  CAS  Google Scholar 

  • Riccardi D, Lee WS, Lee K et al (1996) Localization of the extracellular Ca(2+)-sensing receptor and PTH/PTHrP receptor in rat kidney. Am J Physiol 271:F951–F956

    PubMed  CAS  Google Scholar 

  • Risinger C, Bennett MK (1999) Differential phosphorylation of syntaxin and synaptosome-associated protein of 25 kDa (SNAP-25) isoforms. J Neurochem 72:614–624

    Article  PubMed  CAS  Google Scholar 

  • Rojek A, Fuchtbauer EM, Kwon TH et al (2006) Severe urinary concentrating defect in renal collecting duct-selective AQP2 conditional-knockout mice. Proc Natl Acad Sci USA 103:6037–6042

    Article  PubMed  CAS  Google Scholar 

  • Rojek A, Praetorius J, Frokiaer J et al (2008) A current view of the mammalian aquaglyceroporins. Annu Rev Physiol 70:301–327

    Article  PubMed  CAS  Google Scholar 

  • Russo LM, McKee M, Brown D (2006) Methyl-beta-cyclodextrin induces vasopressin-independent apical accumulation of aquaporin-2 in the isolated, perfused rat kidney. Am J Physiol Renal Physiol 291:F246–F253

    Article  PubMed  CAS  Google Scholar 

  • Sabolic I, Katsura T, Verbavatz JM et al (1995) The AQP2 water channel: effect of vasopressin treatment, microtubule disruption, and distribution in neonatal rats. J Membr Biol 143:165–175

    Article  PubMed  CAS  Google Scholar 

  • Sabolic I, Valenti G, Verbavatz JM et al (1992) Localization of the CHIP28 water channel in rat kidney. Am J Physiol 263:C1225–C1233

    PubMed  CAS  Google Scholar 

  • Saito T, Ishikawa SE, Sasaki S et al (1997) Alteration in water channel AQP-2 by removal of AVP stimulation in collecting duct cells of dehydrated rats. Am J Physiology 272:F183–F191

    CAS  Google Scholar 

  • Sasaki S, Fushimi K, Saito H et al (1994) Cloning, characterization, and chromosomal mapping of human aquaporin of collecting duct. J Clin Invest 93:1250–1256

    Article  PubMed  CAS  Google Scholar 

  • Schnermann J, Chou CL, Ma T et al (1998) Defective proximal tubular fluid reabsorption in trans-genic aquaporin-1 null mice. Proc Natl Acad Sci USA 95:9660–9664

    Article  PubMed  CAS  Google Scholar 

  • Schrier RW (2008) Vasopressin and aquaporin 2 in clinical disorders of water homeostasis. Semin Nephrol 28:289–296

    Article  PubMed  CAS  Google Scholar 

  • Seibold A, Brabet P, Rosenthal W et al (1992) Structure and chromosomal localization of the human antidiuretic hormone receptor gene. Am J Hum Genet 51:1078–1083

    PubMed  CAS  Google Scholar 

  • Sharples EJ, Patel N, Brown P et al (2004) Erythropoietin protects the kidney against the injury and dysfunction caused by ischemia-reperfusion. J Am Soc Nephrol 15:2115–2124

    Article  PubMed  CAS  Google Scholar 

  • Shaw S, Marples D (2005) N-ethylmaleimide causes aquaporin-2 trafficking in the renal inner medullary collecting duct by direct activation of protein kinase A. Am J Physiol Renal Physiol 288:F832–F839

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Li C, Thomsen K et al (2004a) Neonatal ureteral obstruction alters expression of renal sodium transporters and aquaporin water channels. Kidney Int 66:203–215

    Article  CAS  Google Scholar 

  • Shi Y, Pedersen M, Li C et al (2004b) Early release of neonatal ureteral obstruction preserves renal function. Am J Physiol Renal Physiol 286:F1087–F1099

    Article  CAS  Google Scholar 

  • Shimazaki Y, Nishiki T, Omori A et al (1996) Phosphorylation of 25-kDa synaptosome-associated protein. Possible involvement in protein kinase C-mediated regulation of neurotransmitter release. J Biol Chem 271:14548–14553

    CAS  Google Scholar 

  • Smith BL, Agre P (1991) Erythrocyte Mr 28,000 transmembrane protein exists as a multisubunit oligomer similar to channel proteins. J Biol Chem 266:6407–6415

    PubMed  CAS  Google Scholar 

  • Sohara E, Rai T, Miyazaki J et al (2005) Defective water and glycerol transport in the proximal tubules of AQP7 knockout mice. Am J Physiol Renal Physiol 289:F1195–F1200

    Article  PubMed  CAS  Google Scholar 

  • Sollner T, Whiteheart SW, Brunner M et al (1993) SNAP receptors implicated in vesicle targeting and fusion. Nature 362:318–324

    Article  PubMed  CAS  Google Scholar 

  • Stambolic V, Ruel L, Woodgett JR (1996) Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr Biol 6:1664–1668

    Article  PubMed  CAS  Google Scholar 

  • Stamer WD, Snyder RW, Smith BL et al (1994) Localization of aquaporin CHIP in the human eye: implications in the pathogenesis of glaucoma and other disorders of ocular fluid balance. Invest Ophthalmol Vis Sci 35:3867–3872

    PubMed  CAS  Google Scholar 

  • Stamoutsos BA, Carpenter RG, Grossman SP (1981) Role of angiotensin-II in the polydipsia of diabetes insipidus in the Brattleboro rat. Physiol Behav 26:691–693

    Article  PubMed  CAS  Google Scholar 

  • Star RA, Nonoguchi H, Balaban R et al (1988) Calcium and cyclic adenosine monophosphate as second messengers for vasopressin in the rat inner medullary collecting duct. J Clin Invest 81:1879–1888

    Article  PubMed  CAS  Google Scholar 

  • Stefan E, Wiesner B, Baillie GS et al (2007) Compartmentalization of cAMP-dependent signaling by phosphodiesterase-4D is involved in the regulation of vasopressin-mediated water reabsorp-tion in renal principal cells. J Am Soc Nephrol 18:199–212

    Article  PubMed  CAS  Google Scholar 

  • Sudhof TC, De CP, Niemann H et al (1993) Membrane fusion machinery: insights from synaptic proteins. Cell 75:1–4

    PubMed  CAS  Google Scholar 

  • Sugawara M, Hashimoto K, Ota Z (1988) Involvement of prostaglandinE2, cAMP, and vasopressin in lithium-induced polyuria. Am J Physiol 254:R863–R869

    PubMed  CAS  Google Scholar 

  • Tajika Y, Matsuzaki T, Suzuki T et al (2004) Aquaporin-2 is retrieved to the apical storage compartment via early endosomes and phosphatidylinositol 3-kinase-dependent pathway. Endocrinology 145:4375–4383

    Article  PubMed  CAS  Google Scholar 

  • Tajika Y, Matsuzaki T, Suzuki T et al (2005) Differential regulation of AQP2 trafficking in endo-somes by microtubules and actin filaments. Histochem Cell Biol 124:1–12

    Article  PubMed  CAS  Google Scholar 

  • Tamma G, Wiesner B, Furkert J et al (2003) The prostaglandin E2 analogue sulprostone antagonizes vasopressin-induced antidiuresis through activation of Rho. J Cell Sci 116:3285–3294

    Article  PubMed  CAS  Google Scholar 

  • Tannen RL, Regal EM, Dunn MJ et al (1969) Vasopressin-resistant hyposthenuria in advanced chronic renal disease. N Engl J Med 280:1135–1141

    Article  PubMed  CAS  Google Scholar 

  • Tanner GA, Sloan KL, Sophasan S (1973) Effects of renal artery occlusion on kidney function in the rat. Kidney Int 4:377–389

    Article  PubMed  CAS  Google Scholar 

  • Teitelbaum I, McGuinness S (1995) Vasopressin resistance in chronic renal failure. Evidence for the role of decreased V2 receptor mRNA. J Clin Invest 96:378–385

    CAS  Google Scholar 

  • Terris J, Ecelbarger CA, Marples D et al (1995) Distribution of aquaporin-4 water channel expression within rat kidney. Am J Physiol 269:F775–F785

    PubMed  CAS  Google Scholar 

  • Terris J, Ecelbarger CA, Nielsen S et al (1996) Long-term regulation of four renal aquaporins in rats. Am J Physiol 271:F414–F422

    PubMed  CAS  Google Scholar 

  • Timmer RT, Sands JM (1999) Lithium intoxication. J Am Soc Nephrol 10:666–674

    PubMed  CAS  Google Scholar 

  • Topcu SO, Pedersen M, Norregaard R et al (2007) Candesartan prevents long-term impairment of renal function in response to neonatal partial unilateral ureteral obstruction. Am J Physiol Renal Physiol 292:F736–F748

    Article  PubMed  CAS  Google Scholar 

  • Umenishi F, Narikiyo T, Vandewalle A et al (2006) cAMP regulates vasopressin-induced AQP2 expression via protein kinase A-independent pathway. Biochim Biophys Acta 1758:1100–1105

    Article  PubMed  CAS  Google Scholar 

  • Valenti G, Laera A, Gouraud S et al (2002) Low-calcium diet in hypercalciuric enuretic children restores AQP2 excretion and improves clinical symptoms. Am J Physiol Renal Physiol 283:F895–F903

    PubMed  Google Scholar 

  • Valenti G, Laera A, Pace G et al (2000) Urinary aquaporin 2 and calciuria correlate with the severity of enuresis in children. J Am Soc Nephrol 11:1873–1881

    PubMed  CAS  Google Scholar 

  • Valtin H, Schroeder HA (1964) Familial hypothalamic diabetes insipidus in rats (Brattleboro strain). Am J Physiol 206:425–430

    PubMed  CAS  Google Scholar 

  • van Balkom BW, Savelkoul PJ, Markovich D et al (2002) The role of putative phosphorylation sites in the targeting and shuttling of the aquaporin-2 water channel. J Biol Chem 277:41473–41479

    Article  PubMed  CAS  Google Scholar 

  • Van Hoek AN, Ma T, Yang B et al (2000) Aquaporin-4 is expressed in basolateral membranes of proximal tubule S3 segments in mouse kidney. Am J Physiol Renal Physiol 278:F310–F316

    PubMed  Google Scholar 

  • Venkatachalam MA, Bernard DB, Donohoe JF et al (1978) Ischemic damage and repair in the rat proximal tubule: differences among the S1, S2, and S3 segments. Kidney Int 14:31–49

    Article  PubMed  CAS  Google Scholar 

  • Verkman AS (2008) Dissecting the roles of aquaporins in renal pathophysiology using transgenic mice. Semin Nephrol 28:217–226

    Article  PubMed  CAS  Google Scholar 

  • Wade JB, Kachadorian WA (1988) Cytochalasin B inhibition of toad bladder apical membrane responses to ADH. Am J Physiol 255:C526–C530

    PubMed  CAS  Google Scholar 

  • Wade JB, Stetson DL, Lewis SA (1981) ADH action: evidence for a membrane shuttle mechanism. Ann N Y Acad Sci 372:106–117

    Article  PubMed  CAS  Google Scholar 

  • Wall SM, Han JS, Chou CL et al (1992) Kinetics of urea and water permeability activation by vasopressin in rat terminal IMCD. Am J Physiol 262:F989–F998

    PubMed  CAS  Google Scholar 

  • Wang W, Kwon TH, Li C et al (2002a) Reduced expression of Na-K-2Cl cotransporter in medullary TAL in vitamin D-induced hypercalcemia in rats. Am J Physiol Renal Physiol 282:F34–F44

    CAS  Google Scholar 

  • Wang W, Li C, Kwon TH et al (2002b) AQP3, p-AQP2, and AQP2 expression is reduced in polyuric rats with hypercalcemia: prevention by cAMP-PDE inhibitors. Am J Physiol Renal Physiol 283:F1313–F1325

    CAS  Google Scholar 

  • Wen H, Frokiaer J, Kwon TH et al (1999) Urinary excretion of aquaporin-2 in rat is mediated by a vasopressin-dependent apical pathway. J Am Soc Nephrol 10:1416–1429

    PubMed  CAS  Google Scholar 

  • Wood LJ, Massie D, McLean AJ et al (1988) Renal sodium retention in cirrhosis: tubular site and relation to hepatic dysfunction. Hepatology 8:831–836

    Article  PubMed  CAS  Google Scholar 

  • Xu DL, Martin PY, Ohara M et al (1997) Upregulation of aquaporin-2 water channel expression in chronic heart failure rat. J Clin Invest 99:1500–1505

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Sasaki S, Fushimi K et al (1995) Vasopressin increases AQP-CD water channel in apical membrane of collecting duct cells in Brattleboro rats. Am J Physiol 268:C1546–51

    PubMed  CAS  Google Scholar 

  • Yasui M, Hazama A, Kwon TH et al (1999a) Rapid gating and anion permeability of an intracel-lular aquaporin. Nature 402:184–187

    Article  CAS  Google Scholar 

  • Yasui M, Kwon TH, Knepper MA et al (1999b) Aquaporin-6: An intracellular vesicle water channel protein in renal epithelia. Proc Natl Acad Sci USA 96:5808–5813

    Article  CAS  Google Scholar 

  • Yip KP (2002) Coupling of vasopressin-induced intracellular Ca2+ mobilization and apical exo-cytosis in perfused rat kidney collecting duct. J Physiol 538:891–899

    Article  PubMed  CAS  Google Scholar 

  • Zelenina M, Christensen BM, Palmer J et al (2000) Prostaglandin E(2) interaction with AVP: effects on AQP2 phosphorylation and distribution. Am J Physiol Renal Physiol 278:F388–F394

    PubMed  CAS  Google Scholar 

  • Zelenina M, Zelenin S, Bondar AA et al (2002) Water permeability of aquaporin-4 is decreased by protein kinase C and dopamine. Am J Physiol Renal Physiol 283:F309–F318

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kwon, TH., Nielsen, J., Møller, H.B., Fenton, R.A., Nielsen, S., Frøkiær, J. (2009). Aquaporins in the Kidney. In: Beitz, E. (eds) Aquaporins. Handbook of Experimental Pharmacology, vol 190. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79885-9_5

Download citation

Publish with us

Policies and ethics