Skip to main content

In Vitro Analysis and Modification of Aquaporin Pore Selectivity

  • Chapter
Aquaporins

Aquaporins enable the passage of a diverse set of solutes besides water. Many novel aquaporin permeants, such as antimonite and arsenite, silicon, ammo nia, and hydrogen peroxide, have been described very recently. By the same token, the number of available aquaporin sequences has rapidly increased. Yet, sequence analyses and structure models cannot reliably predict permeability properties. Even the contribution to pore selectivity of individual residues in the channel layout is not fully understood. Here, we describe and discuss established in vitro assays for water and solute permeability. Measurements of volume change due to flux along osmotic or chemical gradients yield quantitative biophysical data, whereas pheno-typic growth assays can hint at the relevance of aquaporins in the physiological setting of a certain cell. We also summarize data on the modification of pore selectivity of the prototypical water-specific mammalian aquaporin-1. We show that replacing residues in the pore constriction region allows ammonia, urea, glycerol, and even protons to pass the aquaporin pore.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beitz E (2005) Aquaporins from pathogenic protozoan parasites: structure, function and potential for chemotherapy. Biol Cell 97:373–383

    Article  PubMed  CAS  Google Scholar 

  • Beitz E, Schultz JE (1999) The mammalian aquaporin water channel family: a promising new drug target. Curr Med Chem 6:457–467

    PubMed  CAS  Google Scholar 

  • Beitz E, Wu B, Holm LM, Schultz JE, Zeuthen T (2006) Point mutations in the aromatic/arginine region in aquaporin 1 allow passage of urea, glycerol, ammonia, and protons. Proc Natl Acad Sci U S A 103:269–274

    Article  PubMed  CAS  Google Scholar 

  • Bienert GP, Møller AL, Kristiansen KA, Schulz A, Møller IM, Schjoerring JK, Jahn TP (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282:1183–1192

    Article  PubMed  CAS  Google Scholar 

  • Borgnia MJ, Agre P (2001) Reconstitution and functional comparison of purified GlpF and AqpZ, the glycerol and water channels from Escherichia coli. Proc Natl Acad Sci U S A 98:2888–2893

    Article  PubMed  CAS  Google Scholar 

  • Brooks HL, Regan JW, Yool AJ (2000) Inhibition of aquaporin-1 water permeability by tetraethy-lammonium: involvement of the loop E pore region. Mol Pharmacol 57:1021–1026

    PubMed  CAS  Google Scholar 

  • Calamita G, Gena P, Meleleo D, Ferri D, Svelto M (2006) Water permeability of rat liver mitochondria: a biophysical study. Biochim Biophys Acta 1758:1018–1024

    Article  PubMed  CAS  Google Scholar 

  • Castle NA (2005) Aquaporins as targets for drug discovery. Drug Discov Today 10:485–493

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Wu Y, Voth GA (2006) Origins of proton transport behavior from selectivity domain mutations of the aquaporin-1 channel. Biophys J 90:L73–L75

    Article  PubMed  CAS  Google Scholar 

  • de Groot BL, Grubmüller H (2005) The dynamics and energetics of water permeation and proton exclusion in aquaporins. Curr Opin Struct Biol 15:176–183

    Article  PubMed  Google Scholar 

  • Detmers FJ, de Groot BL, Müller EM, Hinton A, Konings IB, Sze M, Flitsch SL, Grubmüller H, Deen PM (2006) Quaternary ammonium compounds as water channel blockers. Specificity, potency, and site of action. J Biol Chem 281:14207–14214

    Article  PubMed  CAS  Google Scholar 

  • Frigeri A, Nicchia GP, Svelto M (2007) Aquaporins as targets for drug discovery. Curr Pharm Des 13:2421–2427

    Article  PubMed  CAS  Google Scholar 

  • Fu D, Libson A, Miercke LJ, Weitzman C, Nollert P, Krucinski J, Stroud RM (2000) Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290:481–486

    Article  PubMed  CAS  Google Scholar 

  • Gao J, Yu H, Song Q, Li X (2005) Establishment of HEK293 cell line expressing green fluorescent protein-aquaporin-1 to determine osmotic water permeability. Anal Biochem 342:53–58

    Article  PubMed  CAS  Google Scholar 

  • Gonen T, Walz T (2006) The structure of aquaporins. Q Rev Biophys 39:361–396

    Article  PubMed  CAS  Google Scholar 

  • Gourbal B, Sonuc N, Bhattacharjee H,Legare D, Sundar S, Ouellette M,Rosen BP,Mukhopadhyay R (2004) Drug uptake and modulation of drug resistance in Leishmania by an aquaglyceroporin. J Biol Chem 279:31010–31017

    Article  PubMed  CAS  Google Scholar 

  • Hansen M, Kun JF, Schultz JE, Beitz E (2002) A single, bi-functional aquaglyceroporin in blood-stage Plasmodium falciparum malaria parasites. J Biol Chem 277:4874–4882

    Article  PubMed  CAS  Google Scholar 

  • Holm LM, Jahn TP, Møller AL, Schjoerring JK, Ferri D, Klaerke DA, Zeuthen T (2005) NH3 and NH+ 4 permeability in aquaporin-expressing Xenopus oocytes. Pflugers Arch 450:415–428

    Article  PubMed  CAS  Google Scholar 

  • Hub JS, de Groot BL (2008) Mechanism of selectivity in aquaporins and aquaglyceroporins. Proc Natl Acad Sci U S A 105:1198–1203

    Article  PubMed  CAS  Google Scholar 

  • Huber VJ, Tsujita M, Yamazaki M, Sakimura K, Nakada T (2007) Identification of arylsulfon-amides as aquaporin 4 inhibitors. Bioorg Med Chem Lett 17:1270–1273

    Article  PubMed  CAS  Google Scholar 

  • Huber VJ, Tsujita M, Kwee IL, Nakada T (2008) Inhibition of aquaporin 4 by antiepileptic drugs. Bioorg Med Chem (in press)

    Google Scholar 

  • Hubert JF, Duchesne L, Delamarche C, Vaysse A, Gueuné H, Raguénès-Nicol C (2005) Pore selectivity analysis of an aquaglyceroporin by stopped-flow spectrophotometry on bacterial cell suspensions. Biol Cell 97:675–686

    Article  PubMed  CAS  Google Scholar 

  • Ishibashi K, Sasaki S, Fushimi K, Uchida S, Kuwahara M, Saito H, Furukawa T, Nakajima K, Yamaguchi Y, Gojobori T, Marumo F (1994) Molecular cloning and expression of a member of the aquaporin family with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cells. Proc Natl Acad Sci U S A 91:6269–6273

    Article  PubMed  CAS  Google Scholar 

  • Jahn TP, Møller AL, Zeuthen T, Holm LM, Klaerke DA, Mohsin B, Kühlbrandt W, Schjoerring JK (2004) Aquaporin homologues in plants and mammals transport ammonia. FEBS Lett 574: 31–36

    Article  PubMed  CAS  Google Scholar 

  • Jeyaseelan K, Sepramaniam S, Armugam A, Wintour EM (2006) Aquaporins: a promising target for drug development. Exp Opin Ther Targets 10:889–909

    Article  CAS  Google Scholar 

  • Karlgren S, Filipsson C, Mullins JG, Bill RM, Tamás MJ, Hohmann S (2004) Identification of residues controlling transport through the yeast aquaglyceroporin Fps1 using a genetic screen. Eur J Biochem 271:771–779

    Article  PubMed  CAS  Google Scholar 

  • Karlgren S, Pettersson N, Nordlander B, Mathai JC, Brodsky JL, Zeidel ML, Bill RM, Hohmann S (2005) Conditional osmotic stress in yeast: a system to study transport through aquaglycero-porins and osmostress signaling. J Biol Chem 280:7186–7193

    Article  PubMed  CAS  Google Scholar 

  • Laizé V, Rousselet G, Verbavatz JM, Berthonaud V, Gobin R, Roudier N, Abrami L, Ripoche P, Tacnet F (1995) Functional expression of the human CHIP28 water channel in a yeast secretory mutant. FEBS Lett 373:269–2674

    Article  PubMed  Google Scholar 

  • Liu Z, Shen J, Carbrey JM, Mukhopadhyay R, Agre P, Rosen BP (2002) Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proc Natl Acad Sci U S A 99:6053–6058

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Promeneur D, Rojek A, Kumar N, Frøkiaer J, Nielsen S, King LS, Agre P, Carbrey JM (2007) Aquaporin 9 is the major pathway for glycerol uptake by mouse erythrocytes, with implications for malarial virulence. Proc Natl Acad Sci U S A 104:12560–12564

    Article  PubMed  CAS  Google Scholar 

  • Luyten K, Albertyn J, Skibbe WF, Prior BA, Ramos J, Thevelein JM, Hohmann S (1995) Fps1, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress. EMBO J 14:1360–1371

    PubMed  CAS  Google Scholar 

  • Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691

    Article  PubMed  CAS  Google Scholar 

  • Mallo RC, Ashby MT (2006) AqpZ-mediated water permeability in Escherichia coli measured by stopped-flow spectroscopy. J Bacteriol 188:820–822

    Article  PubMed  CAS  Google Scholar 

  • Mathai JC, Mori S, Smith BL, Preston GM, Mohandas N, Collins M, van Zijl PC, Zeidel ML, Agre P (1996) Functional analysis of aquaporin-1 deficient red cells. The Colton-null phenotype. J Biol Chem 271:1309–1313

    Article  PubMed  CAS  Google Scholar 

  • Pavlovic-Djuranovic S, Kun JF, Schultz JE, Beitz E (2006) Dihydroxyacetone and methylglyoxal as permeants of the Plasmodium aquaglyceroporin inhibit parasite proliferation. Biochim Bio-phys Acta 1758:1012–1017

    Article  CAS  Google Scholar 

  • Pettersson N, Hagström J, Bill RM, Hohmann S (2006) Expression of heterologous aquaporins for functional analysis in Saccharomyces cerevisiae. Curr Genet 50:247–255

    Article  PubMed  CAS  Google Scholar 

  • Preston GM, Carroll TP, Guggino WB, Agre P (1992) Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256:385–387

    Article  PubMed  CAS  Google Scholar 

  • Preston GM, Jung JS, Guggino WB, Agre P (1993) The mercury-sensitive residue at cysteine 189 in the CHIP28 water channel. J Biol Chem 268:17–20

    PubMed  CAS  Google Scholar 

  • Saparov SM, Kozono D, Rothe U, Agre P, Pohl P (2001) Water and ion permeation of aquaporin-1 in planar lipid bilayers. Major differences in structural determinants and stoichiometry. J Biol Chem 276:31515–31520

    Article  PubMed  CAS  Google Scholar 

  • Solenov E, Watanabe H, Manley GT, Verkman AS (2004) Sevenfold-reduced osmotic water permeability in primary astrocyte cultures from AQP-4-deficient mice, measured by a fluorescence quenching method. Am J Physiol Cell Physiol 286:C426–C432

    Article  PubMed  CAS  Google Scholar 

  • Saparov SM, Liu K, Agre P, Pohl P (2007) Fast and selective ammonia transport by aquaporin-8. J Biol Chem 282:5296–5301

    Article  PubMed  CAS  Google Scholar 

  • Solomon AK, Chasan B, Dix JA, Lukacovic MF, Toon MR, Verkman AS (1983) The aqueous pore in the red cell membrane: band 3 as a channel for anions, cations, nonelectrolytes, and water. Ann N Y Acad Sci 414:97–124

    Article  PubMed  CAS  Google Scholar 

  • Sui H, Han BG, Lee JK, Walian P, Jap BK (2001) Structural basis of water-specific transport through the AQP1 water channel. Nature 414:872–878

    Article  PubMed  CAS  Google Scholar 

  • Uehlein N, Lovisolo C, Siefritz F, Kaldenhoff R (2003) The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature 425:734–737

    Article  PubMed  CAS  Google Scholar 

  • Verkman AS (1989) Mechanisms and regulation of water permeability in renal epithelia. Am J Physiol 257:C837–C850

    PubMed  CAS  Google Scholar 

  • Wu B, Altmann K, Barzel I, Krehan S, Beitz E (2008) A yeast based phenotypic screen for aqua-porin inhibitors. Pflügers Arch – Eur J Physiol 456:717–720

    Article  CAS  Google Scholar 

  • Wysocki R, Chéry CC, Wawrzycka D, Van Hulle M, Cornelis R, Thevelein JM, Tamás MJ (2001) The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae. Mol Microbiol 40:1391–1401

    Article  PubMed  CAS  Google Scholar 

  • Yasui M, Hazama A, Kwon TH, Nielsen S, Guggino WB, Agre P (1999) Rapid gating and anion permeability of an intracellular aquaporin. Nature 402:184–187

    Article  PubMed  CAS  Google Scholar 

  • Zardoya R (2005) Phylogeny and evolution of the major intrinsic protein family. Biol Cell 97: 397–414

    Article  PubMed  CAS  Google Scholar 

  • Zeidel ML, Ambudkar SV, Smith BL, Agre P (1992) Reconstitution of functional water channels in liposomes containing purified red cell CHIP28 protein. Biochemistry 31:7436–7440

    Article  PubMed  CAS  Google Scholar 

  • Zeuthen T, Wu B, Pavlovic-Djuranovic S, Holm LM, Uzcategui NL, Duszenko M, Kun JF, Schultz JE, Beitz E (2006) Ammonia permeability of the aquaglyceroporins from Plasmodium falci-parum, Toxoplasma gondii and Trypansoma brucei. Mol Microbiol 61:1598–1608

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Beitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beitz, E. et al. (2009). In Vitro Analysis and Modification of Aquaporin Pore Selectivity. In: Beitz, E. (eds) Aquaporins. Handbook of Experimental Pharmacology, vol 190. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79885-9_4

Download citation

Publish with us

Policies and ethics