Skip to main content

Structural Function of MIP/Aquaporin 0 in the Eye Lens; Genetic Defects Lead to Congenital Inherited Cataracts

  • Chapter
Aquaporins

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 190))

Aquaporin 0 (AQP0) was originally characterized as a membrane intrinsic protein, specifically expressed in the lens fibers of the ocular lens and designated MIP, for major intrinsic protein of the lens. Once the gene was cloned, an internal repeat was identified, encoding for the amino acids Asp-Pro-Ala, the NPA repeat. Shortly, the MIP gene family was emerging, with members being characterized in mammals, insects, and plants. Once Peter Agre's laboratory developed a functional assay for water channels, the MIP family became the aquaporin family and MIP became known as aquaporin 0. Besides functioning as a water channel, aquaporin 0 also plays a structural role, being required for maintaining the transparency and optical accommodation of the ocular lens. Mutations in the AQP0 gene in human and mice result in genetic cataracts; deletion of the MIP/AQP0 gene in mice results in lack of suture formation required for maintenance of the lens fiber architecture, resulting in perturbed accommodation and focus properties of the ocular lens. Crystallography studies support the notion of the double function of aquaporin 0 as a water channel (open configuration) or adhesion molecule (closed configuration) in the ocular lens fibers. The functions of MIP/AQP0, both as a water channel and an adhesive molecule in the lens fibers, contribute to the narrow intercellular space of the lens fibers that is required for lens transparency and accommodation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aerts T, Xia JZ, Slegers H, de Block J, Clauwaert J (1990) Hydrodynamic characterization of the major intrinsic protein from the bovine lens fiber membranes.Extraction in n-octyl-beta-D-glucopyranoside and evidence for a tetrameric structure. J Biol Chem 265:8675–8680

    PubMed  CAS  Google Scholar 

  • Agre P, Preston GM, Smith BL, Jung JS, Raina S, Moon C, Guggino WB, Nielsen S (1993a) Aquaporin CHIP: the archetypal molecular water channel. Am J Physiol 265:F463–F476

    CAS  Google Scholar 

  • Agre P, Sasaki S, Chrispeels MJ (1993b) Aquaporins: a family of water channel proteins. Am J Physiol 265:F461

    CAS  Google Scholar 

  • Agre P, King LS, Yasui M, Guggino WB, Ottersen OP, Fujiyoshi Y, Engel A, Nielsen S (2002) Aquaporin water channels—from atomic structure to clinical medicine. J Physiol 542:3–16

    PubMed  CAS  Google Scholar 

  • Al-Ghoul KJ, Kuszak JR (1999) Anterior polar cataracts in CS rats: a predictor of mature cataract formation. Invest Ophthalmol Vis Sci 40:668–679

    PubMed  CAS  Google Scholar 

  • Al-Ghoul KJ, Novak LA, Kuszak JR (1998) The structure of posterior subcapsular cataracts in the Royal College of Surgeons (RCS) rats. Exp Eye Res 67:163–177

    PubMed  CAS  Google Scholar 

  • Al-Ghoul KJ, Kirk T, Kuszak AJ, Zoltoski RK, Shiels A, Kuszak JR (2003a) Lens structure in MIP-deficient mice. Anat Rec 273:714–730

    Google Scholar 

  • Al-Ghoul KJ, Kuszak JR, Lu JY, Owens MJ (2003b) Morphology and organization of posterior fiber ends during migration. Mol Vis 9:119–128

    Google Scholar 

  • Alizadeh A, Clark JI, Seeberger T, Hess J, Blankenship T, Spicer A, FitzGerald PG (2002) Targeted genomic deletion of the lens-specific intermediate filament protein CP49. Invest Ophthalmol Vis Sci 43:3722–3727

    PubMed  Google Scholar 

  • Alizadeh A, Clark J, Seeberger T, Hess J, Blankenship T, FitzGerald PG (2003) Targeted deletion of the lens fiber cell-specific intermediate filament protein filensin. Invest Ophthalmol Vis Sci 44:5252–5258

    PubMed  Google Scholar 

  • Arora A, Minogue PJ, Liu X, Addison PK, Russel-Eggit I, Webster AR, Hunt DM, Ebihara L, Beyer EC, Berthoud VM, Moore AT (2008) A novel connexin50 mutation associated with congenital nuclear pulverulent cataracts. J Med Genet 45:155–160

    PubMed  CAS  Google Scholar 

  • Austin LR, Rice SJ, Baldo GJ, Lange AJ, Haspel HC, Mathias RT (1993) The cDNA sequence encoding the major intrinsic protein of frog lens. Gene 124:303–304

    PubMed  CAS  Google Scholar 

  • Ball LE, Little M, Nowak MW, Garland DL, Crouch RK, Schey KL (2003) Water permeability of C-terminally truncated aquaporin 0 (AQP0 1–243) observed in the aging human lens. Invest Ophthalmol Vis Sci 44:4820–4828

    PubMed  Google Scholar 

  • Ball LE, Garland DL, Crouch RK, Schey KL (2004) Post-translational modifications of aqua-porin 0 (AQP0) in the normal human lens: spatial and temporal occurrence. Biochemistry 43:9856–9865

    PubMed  CAS  Google Scholar 

  • Bassnett S (1997) Fiber cell denucleation in the primate lens. Invest Ophthalmol Vis Sci 38:1678–1687

    PubMed  CAS  Google Scholar 

  • Bassnett S (2002) Lens organelle degradation. Exp Eye Res 74:1–6

    PubMed  CAS  Google Scholar 

  • Bassnett S (2005) Three-dimensional reconstruction of cells in the living lens:the relationship between cell length and volume. Exp Eye Res 81:716–723

    PubMed  CAS  Google Scholar 

  • Bassnett S, Duncan G (1985) Direct measurement of pH in the rat lens by ion-sensitive microelec-trodes. Exp Eye Res 40:585–590

    PubMed  CAS  Google Scholar 

  • Bassnett S, Mataic D (1997) Chromatin degradation in differentiating fiber cells of the eye lens. J Cell Biol 137:37–49

    PubMed  CAS  Google Scholar 

  • Bassnett S, Kuszak JR, Reinisch L, Brown HG, Beebe DC (1994) Intercellular communication between epithelial and fiber cells of the eye lens. J Cell Sci 107:(Pt.4):799–811

    PubMed  CAS  Google Scholar 

  • Beebe DC, Vasiliev O, Guo J, Shui YB, Bassnett S (2001) Changes in adhesion complexes define stages in the differentiation of lens fiber cells. Invest Ophthalmol Vis Sci 42:727–734

    PubMed  CAS  Google Scholar 

  • Berry V, Francis P, Kaushal S, Moore A, Bhattacharya S (2000) Missense mutations in MIP underlie autosomal dominant ‘polymorphic’ and lamellar cataracts linked to 12q. Nat Genet 25:15–17

    PubMed  CAS  Google Scholar 

  • Bettelheim FA, Siew EL,Jr Chylack LT (1981) Studies on human cataracts. III. Structural elements in nuclear cataracts and their contribution to the turbidity. Invest Ophthalmol Vis Sci 20:348–354

    PubMed  CAS  Google Scholar 

  • Bettelheim FA, Qin C, Jr Zigler JS (1995) Calcium cataract:a model for optical anisotropy fluctuations. Exp Eye Res 60:153–157

    PubMed  CAS  Google Scholar 

  • Bettelheim FA, Churchill AC, Jr Zigler JS (1997) On the nature of hereditary cataract in strain 13/N guinea pigs. Curr Eye Res 16:917–924

    PubMed  CAS  Google Scholar 

  • Blankenship TN, Hess JF, FitzGerald PG (2001) Development- and differentiation-dependent reorganization of intermediate filaments in fiber cells. Invest Ophthalmol Vis Sci 42:735–742

    PubMed  CAS  Google Scholar 

  • Bloemendal H (1982) Lens proteins. CRC Crit Rev Biochem 12:1–38

    PubMed  CAS  Google Scholar 

  • Bloemendal H, Vermorken AJ, Kibbelaar M, Dunia I, Benedetti EL (1977) Nomenclature for the polypeptide chains of lens plasma membranes. Exp Eye Res 24:413–415

    PubMed  CAS  Google Scholar 

  • Bloemendal H, de Jong W, Jaenicke R, Lubsen NH, Slingsby C, Tardieu A (2004) Ageing and vision:structure, stability and function of lens crystallins. Prog Biophys Mol Biol 86:407–485

    PubMed  CAS  Google Scholar 

  • Bok D, Dockstader J, Horwitz J (1982) Immunocytochemical localization of the lens main intrinsic polypeptide (MIP26) in communicating junctions. J Cell Biol 92:213–220

    PubMed  CAS  Google Scholar 

  • Boyle DL, Takemoto LJ (1997) Confocal microscopy of human lens membranes in aged normal and nuclear cataracts. Invest Ophthalmol Vis Sci 38:2826–2832

    PubMed  CAS  Google Scholar 

  • Boyle DL, Takemoto LJ (1999) Localization of MIP 26 in nuclear fiber cells from aged normal and age-related nuclear cataractous human lenses. Exp Eye Res 68:41–49

    PubMed  CAS  Google Scholar 

  • Boyle DL, Blunt DS, Takemoto LJ (1997) Confocal microscopy of cataracts from animal model systems:relevance to human nuclear cataract. Exp Eye Res 64:565–572

    PubMed  CAS  Google Scholar 

  • Broekhuyse RM, Kuhlmann ED, Stols AL (1976) Lens membranes II.Isolation and characterization of the main intrinsic polypeptide (MIP) of bovine lens fiber membranes. Exp Eye Res 23:365–371

    PubMed  CAS  Google Scholar 

  • Broekhuyse RM, Kuhlmann ED, Winkens HJ (1979) Lens membranes VII. MIP is an immunolog-ically specific component of lens fiber membranes and is identical with 26K band protein. Exp Eye Res 29:303–313

    PubMed  CAS  Google Scholar 

  • Buzhynskyy N, Hite RK, Walz T, Scheuring S (2007) The supramolecular architecture of junctional microdomains in native lens membranes. EMBO Reports 8:51–55

    PubMed  CAS  Google Scholar 

  • Chandy G, Zampighi GA, Kreman M, Hall JE (1997) Comparison of the water transporting properties of MIP and AQP1. J Membr Biol 159:29–39

    PubMed  CAS  Google Scholar 

  • Chepelinsky AB (1994) The MIP transmembrane channel gene family. In:Peracchia C (ed.) Handbook of membrane channels, molecular and cellular physiology. Academic Press, San Diego, CA, pp. 413–432

    Google Scholar 

  • Costello MJ, McIntosh TJ, Robertson JD (1989) Distribution of gap junctions and square array junctions in the mammalian lens. Invest Ophthalmol Vis Sci 30:975–989

    PubMed  CAS  Google Scholar 

  • Cvekl A, Piatigorsky J (1996) Lens development and crystallin gene expression:many roles for Pax-6. Bioessays 18:621–630

    PubMed  CAS  Google Scholar 

  • David LL, Takemoto LJ, Anderson RS, Shearer TR (1988) Proteolytic changes in main intrinsic polypeptide (MIP26) from membranes in selenite cataract. Curr Eye Res 7:411–417

    PubMed  CAS  Google Scholar 

  • de Iongh RU, Lovicu FJ, Overbeek PA, Schneider MD, Joya J, Hardeman ED, McAvoy JW (2001) Requirement for TGFbeta receptor signaling during terminal lens fiber differentiation. Development (Cambridge, England) 128:3995–4010

    Google Scholar 

  • DeRosa AM, Mui R, Srinivas M, White TW (2006) Functional characterization of a naturally occurring Cx50 truncation. Invest Ophthalmol Vis Sci 47:4474–4481

    PubMed  Google Scholar 

  • DeRosa AM, Xia CH, Gong X, White TW (2007) The cataract-inducing S50P mutation in Cx50 dominantly alters the channel gating of wild-type lens connexins. J Cell Sci 120:4107–4116

    PubMed  CAS  Google Scholar 

  • Donaldson P, Kistler J (1992) Reconstitution of channels from preparations enriched in lens gap junction protein MP70. J Membr Biol 129:155–165

    PubMed  CAS  Google Scholar 

  • Donaldson P, Kistler J, Mathias RT (2001) Molecular solutions to mammalian lens transparency. News Physiol Sci 16:118–123

    PubMed  CAS  Google Scholar 

  • Donaldson PJ, Grey AC, Merriman-Smith BR, Sisley AM, Soeller C, Cannell MB, Jacobs MD (2004) Functional imaging:new views on lens structure and function. Clin Exp Pharmacol Physiol 31:890–895

    PubMed  CAS  Google Scholar 

  • Drake KD, Schuette D, Chepelinsky AB, Jacob TJ, Crabbe MJ (2002) pH-Dependent channel activity of heterologously-expressed main intrinsic protein (MIP) from rat lens. FEBS Lett 512:199–204

    PubMed  CAS  Google Scholar 

  • Dunia I, Recouvreur M, Nicolas P, Kumar N, Bloemendal H, Benedetti EL (1998) Assembly of connexins and MP26 in lens fiber plasma membranes studied by SDS-fracture immunolabeling. J Cell Sci 111:(Pt.5):2109–2120

    PubMed  Google Scholar 

  • Dunia I, Cibert C, Gong X, Xia CH, Recouvreur M, Levy E, Kumar N, Bloemendal H, Benedetti EL (2006) Structural and immunocytochemical alterations in eye lens fiber cells from Cx46 and Cx50 knockout mice. Eur J Cell Biol 85:729–752

    PubMed  CAS  Google Scholar 

  • Ebihara L (1994) Gap junction proteins in the lens. In:Peracchia C (ed.) Handbook of membrane channels, molecular and cellular physiology Academic Press, San Diego, CA, pp. 403–410

    Google Scholar 

  • Ehring GR, Zampighi G, Horwitz J, Bok D, Hall JE (1990) Properties of channels reconstituted from the major intrinsic protein of lens fiber membranes. J Gen Physiol 96:631–664

    PubMed  CAS  Google Scholar 

  • Ehring GR, Lagos N, Zampighi GA, Hall JE (1992) Phosphorylation modulates the voltage dependence of channels reconstituted from the major intrinsic protein of lens fiber membranes. J Membr Biol 126:75–88

    PubMed  CAS  Google Scholar 

  • Engel A, Fujiyoshi Y, Agre P (2000) The importance of aquaporin water channel protein structures. EMBO J 19:800–806

    PubMed  CAS  Google Scholar 

  • Engel A, Fujiyoshi Y, Gonen T, Walz T (2008) Junction-forming aquaporins. Curr Opin Struct Biol 18:229–235

    PubMed  CAS  Google Scholar 

  • Fan J, Donovan AK, Ledee DR, Zelenka PS, Fariss RN, Chepelinsky AB (2004) gammaE-crystallin recruitment to the plasma membrane by specific interaction between lens MIP/aquaporin-0 and gammaE-crystallin. Invest Ophthalmol Vis Sci 45:863–871

    PubMed  Google Scholar 

  • Fan J, Fariss RN, Purkiss AG, Slingsby C, Sandilands A, Quinlan R, Wistow G, Chepelinsky AB (2005) Specific interaction between lens MIP/Aquaporin-0 and two members of the gamma-crystallin family. Mol Vis 11:76–87

    PubMed  CAS  Google Scholar 

  • Fitzgerald PG, Bok D, Horwitz J (1983) Immunocytochemical localization of the main intrinsic polypeptide (MIP) in ultrathin frozen sections of rat lens. J Cell Biol 97:1491–1499

    PubMed  CAS  Google Scholar 

  • FitzGerald PG, Bok D, Horwitz J (1985) The distribution of the main intrinsic membrane polypep-tide in ocular lens. Curr Eye Res 4:1203–1218

    PubMed  CAS  Google Scholar 

  • Fotiadis D, Hasler L, Muller DJ, Stahlberg H, Kistler J, Engel A (2000) Surface tongue-and-groove contours on lens MIP facilitate cell-to-cell adherence. J Mol Biol 300:779–789

    PubMed  CAS  Google Scholar 

  • Francis PJ, Berry V, Moore AT, Bhattacharya S (1999) Lens biology:development and human cataractogenesis. Trends Genet 15:191–196

    PubMed  CAS  Google Scholar 

  • Francis P, Berry V, Bhattacharya S, Moore A (2000a) Congenital progressive polymorphic cataract caused by a mutation in the major intrinsic protein of the lens, MIP (AQP0). Br J Ophthalmol 84:1376–1379

    CAS  Google Scholar 

  • Francis P, Chung JJ, Yasui M, Berry V, Moore A, Wyatt MK, Wistow G, Bhattacharya SS, Agre P (2000b) Functional impairment of lens aquaporin in two families with dominantly inherited cataracts. Hum Mol Genet 9:2329–2334

    CAS  Google Scholar 

  • Gao J, Sun X, Martinez-Wittinghan FJ, Gong X, White TW, Mathias RT (2004) Connections between connexins, calcium, and cataracts in the lens. J Gen Physiol 124:289–300

    PubMed  CAS  Google Scholar 

  • Geyer DD, Spence MA, Johannes M, Flodman P, Clancy KP, Berry R, Sparkes RS, Jonsen MD, Isenberg SJ, Bateman JB (2006) Novel single-base deletional mutation in major intrinsic protein (MIP) in autosomal dominant cataract. Am J Ophthalmol 141:761–763

    PubMed  CAS  Google Scholar 

  • Girsch SJ, Peracchia C (1985a) Lens cell-to-cell channel protein:I. Self-assembly into liposomes and permeability regulation by calmodulin. J Membr Biol 83:217–225

    CAS  Google Scholar 

  • Girsch SJ, Peracchia C (1985b) Lens cell-to-cell channel protein:II. Conformational change in the presence of calmodulin. J Membr Biol 83:227–233

    CAS  Google Scholar 

  • Girsch SJ, Peracchia C (1991) Calmodulin interacts with a C-terminus peptide from the lens membrane protein MIP26. Curr Eye Res 10:839–849

    PubMed  CAS  Google Scholar 

  • Golestaneh N, Fan J, Fariss RN, Lo WK, Zelenka PS, Chepelinsky AB (2004) Lens major intrinsic protein (MIP)/aquaporin 0 expression in rat lens epithelia explants requires fibroblast growth factor-induced ERK and JNK signaling. J Biol Chem 279:31813–31822

    PubMed  CAS  Google Scholar 

  • Golestaneh N, Fan J, Zelenka P, Chepelinsky AB (2008) PKC putative phosphorylation site Ser235 is required for MIP/AQP0 translocation to the plasma membrane. Mol Vis 14:1006–1014

    PubMed  CAS  Google Scholar 

  • Gonen T, Walz T (2006) The structure of aquaporins. Q Rev Biophys 39:361–396

    PubMed  CAS  Google Scholar 

  • Gonen T, Cheng Y, Kistler J, Walz T (2004a) Aquaporin-0 membrane junctions form upon prote-olytic cleavage. J Mol Biol 342:1337–1345

    CAS  Google Scholar 

  • Gonen T, Sliz P, Kistler J, Cheng Y, Walz T (2004b) Aquaporin-0 membrane junctions reveal the structure of a closed water pore. Nature 429:193–197

    CAS  Google Scholar 

  • Gonen T, Cheng Y, Sliz P, Hiroaki Y, Fujiyoshi Y, Harrison SC, Walz T (2005) Lipid-protein interactions in double-layered two-dimensional AQP0 crystals. Nature 438:633–638

    PubMed  CAS  Google Scholar 

  • Gong X, Cheng C, Xia CH (2007) Connexins in lens development and cataractogenesis. J Membr Biol 218:9–12

    PubMed  CAS  Google Scholar 

  • Gooden M, Rintoul D, Takehana M, Takemoto L (1985a) Major intrinsic polypeptide (MIP26K) from lens membrane:reconstitution into vesicles and inhibition of channel forming activity by peptide antiserum. Biochem Biophys Res Commun 128:993–999

    CAS  Google Scholar 

  • Gooden MM, Takemoto LJ, Rintoul DA (1985b) Reconstitution of MIP26 from single human lenses into artificial membranes. I. Differences in pH sensitivity of cataractous vs. normal human lens fiber cell proteins. Curr Eye Res 4:1107–1115

    CAS  Google Scholar 

  • Gorin MB, Yancey SB, Cline J, Revel JP, Horwitz J (1984) The major intrinsic protein (MIP) of the bovine lens fiber membrane:characterization and structure based on cDNA cloning. Cell 39:49–59

    PubMed  CAS  Google Scholar 

  • Granstrom D, Swamy M, Abraham E, Takemoto L (1989) Covalent change in the major intrinsic polypeptide (MIP26K) during cataract development in the streptozotocin-induced diabetic rat. Curr Eye Res 8:589–593

    PubMed  CAS  Google Scholar 

  • Graw J (2003) The genetic and molecular basis of congenital eye defects. Nat Rev 4:876–888

    CAS  Google Scholar 

  • Graw J (2004) Congenital hereditary cataracts. Int J Dev Biol 48:1031–1044

    PubMed  CAS  Google Scholar 

  • Graw J, Loster J (2003) Developmental genetics in ophthalmology. Ophthalmic Genet 24:1–33

    PubMed  Google Scholar 

  • Grey AC, Jacobs MD, Gonen T, Kistler J, Donaldson PJ (2003) Insertion of MP20 into lens fiber cell plasma membranes correlates with the formation of an extracellular diffusion barrier. Exp Eye Res 77:567–574

    PubMed  CAS  Google Scholar 

  • Gruijters WT (1989) A non-connexon protein (MIP) is involved in eye lens gap-junction formation. J Cell Sci 93:(Pt 3):509–513

    PubMed  CAS  Google Scholar 

  • Gruijters WT, Kistler J, Bullivant S, Goodenough DA (1987) Immunolocalization of MP70 in lens fiber 16–17-nm intercellular junctions. J Cell Biol 104:565–572

    PubMed  CAS  Google Scholar 

  • Gu F, Zhai H, Li D, Zhao L, Li C, Huang S, Ma X (2007) A novel mutation in major intrinsic protein of the lens gene (MIP) underlies autosomal dominant cataract in a Chinese family. Mol Vis 13:1651–1656

    PubMed  CAS  Google Scholar 

  • Hamai Y, Kuwabara T (1975) Early cytologic changes of Fraser cataract. An electron microscopic study. Invest Ophthalmol 14:517–527

    PubMed  CAS  Google Scholar 

  • Hamann S, Zeuthen T, La Cour M, Nagelhus EA, Ottersen OP, Agre P, Nielsen S (1998) Aqua- porins in complex tissues:distribution of aquaporins 1–5 in human and rat eye. Am J Physiol 274:C1332–C1345

    PubMed  CAS  Google Scholar 

  • Han J, Little M, David LL, Giblin FJ, Schey KL (2004) Sequence and peptide map of guinea pig aquaporin 0. Mol Vis 10:215–222

    PubMed  CAS  Google Scholar 

  • Harries WE, Akhavan D, Miercke LJ, Khademi S, Stroud RM (2004) The channel architecture of aquaporin 0 at a 2.2-A resolution. Proc Natl Acad Sci U S A 101:14045–14050

    PubMed  CAS  Google Scholar 

  • Hasler L, Walz T, Tittmann P, Gross H, Kistler J, Engel A (1998) Purified lens major intrinsic protein (MIP) forms highly ordered tetragonal two-dimensional arrays by reconstitution. J Mol Biol 279:855–864

    PubMed  CAS  Google Scholar 

  • Hebert DN, Molinari M (2007) In and out of the ER:protein folding, quality control, degradation, and related human diseases. Physiol Rev 87:1377–1408

    PubMed  CAS  Google Scholar 

  • Hejtmancik JF (2008) Congenital cataracts and their molecular genetics. Semin Cell Dev Biol 19:134–149

    PubMed  CAS  Google Scholar 

  • Hejtmancik JF, Kantorow M (2004) Molecular genetics of age-related cataract. Exp Eye Res 79:3–9

    PubMed  CAS  Google Scholar 

  • Hoenders HJ, Bloemendal H (1983) Lens proteins and aging. J Gerontol 38:278–286

    PubMed  CAS  Google Scholar 

  • Jacobs MD, Soeller C, Sisley AM, Cannell MB, Donaldson PJ (2004) Gap junction processing and redistribution revealed by quantitative optical measurements of connexin46 epitopes in the lens. Invest Ophthalmol Vis Sci 45:191–199

    PubMed  Google Scholar 

  • Jung JS, Preston GM, Smith BL, Guggino WB, Agre P (1994) Molecular structure of the water channel through aquaporin CHIP.The hourglass model. J Biol Chem 269:14648–14654

    PubMed  CAS  Google Scholar 

  • Kalman K, Nemeth-Cahalan KL, Froger A, Hall JE (2006) AQP0-LTR of the Cat Fr mouse alters water permeability and calcium regulation of wild type AQP0. Biochim Biophys Acta 1758:1094–1099

    PubMed  CAS  Google Scholar 

  • Kalman K, Nemeth-Cahalan KL, Froger A, Hall JE (2008) Phosphorylation determines the calmodulin-mediated CA2+response and water permeability of AQP0. J Biol Chem 283:21278–21283

    PubMed  CAS  Google Scholar 

  • Kent NA, Shiels A (1990) Nucleotide and derived amino-acid sequence of the major intrinsic protein of rat eye-lens. Nucleic Acids Res 18:4256

    PubMed  CAS  Google Scholar 

  • Kondoh H (1999) Transcription factors for lens development assessed in vivo. Curr Opin Genet Dev 9:301–308

    PubMed  CAS  Google Scholar 

  • Kushmerick C, Rice SJ, Baldo GJ, Haspel HC, Mathias RT (1995) Ion, water and neutral solute transport in Xenopus oocytes expressing frog lens MIP. Exp Eye Res 61:351–362

    PubMed  CAS  Google Scholar 

  • Kuszak JR (1995a) The development of lens sutures. Prog Retin Eye Res 14:567–591

    Google Scholar 

  • Kuszak JR (1995b) The ultrastructure of epithelial and fiber cells in the crystalline lens. Int Rev Cytol 163:305–350

    CAS  Google Scholar 

  • Kuszak JR, Al-Ghoul KJ (2002) A quantitative analysis of sutural contributions to variability in back vertex distance and transmittance in rabbit lenses as a function of development, growth, and age. Optom Vis Sci 79:193–204

    PubMed  CAS  Google Scholar 

  • Kuszak JR, Sivak JG, Weerheim JA (1991) Lens optical quality is a direct function of lens sutural architecture. Invest Ophthalmol Vis Sci 32:2119–2129

    PubMed  CAS  Google Scholar 

  • Kuszak JR, Peterson KL, Sivak JG, Herbert KL (1994) The interrelationship of lens anatomy and optical quality. II. Primate lenses. Exp Eye Res 59:521–535

    CAS  Google Scholar 

  • Kuszak JR, Peterson KL, Brown HG (1996) Electron microscopic observations of the crystalline lens. Microsc Res Tech 33:441–479

    PubMed  CAS  Google Scholar 

  • Kuszak JR, Zoltoski RK, Sivertson C (2004a) Fiber cell organization in crystalline lenses. Exp Eye Res 78:673–687

    CAS  Google Scholar 

  • Kuszak JR, Zoltoski RK, Tiedemann CE (2004b) Development of lens sutures. Int J Dev Biol 48:889–902

    Google Scholar 

  • Kuszak JR, Mazurkiewicz M, Jison L, Madurski A, Ngando A, Zoltoski RK (2006a) Quantitative analysis of animal model lens anatomy:accommodative range is related to fiber structure and organization. Vet Ophthalmol 9:266–280

    CAS  Google Scholar 

  • Kuszak JR, Mazurkiewicz M, Zoltoski R (2006b) Computer modeling of secondary fiber development and growth:I. Nonprimate lenses. Mol Vis 12:251–270

    Google Scholar 

  • Lin JS, Eckert R, Kistler J, Donaldson P (1998) Spatial differences in gap junction gating in the lens are a consequence of connexin cleavage. Eur J Cell Biol 76:246–250

    PubMed  CAS  Google Scholar 

  • Lin H, Hejtmancik JF, Qi Y (2007) A substitution of arginine to lysine at the COOH-terminus of MIP caused a different binocular phenotype in a congenital cataract family. Mol Vis 13:1822–1827

    PubMed  CAS  Google Scholar 

  • Lindsey Rose KM, Gourdie RG, Prescott AR, Quinlan RA, Crouch RK, Schey KL (2006) The C terminus of lens aquaporin 0 interacts with the cytoskeletal proteins filensin and CP49. Invest Ophthalmol Vis Sci 47:1562–1570

    Google Scholar 

  • Liu BF, Liang JJ (2008) Confocal fluorescence microscopy study of interaction between lens MIP26/AQP0 and crystallins in living cells. J Cell Biochem 104:51–58

    PubMed  CAS  Google Scholar 

  • Louis CF, Hogan P, Visco L, Strasburg G (1990) Identity of the calmodulin-binding proteins in bovine lens plasma membranes. Exp Eye Res 50:495–503

    PubMed  CAS  Google Scholar 

  • Lovicu FJ, McAvoy JW (2001) FGF-induced lens cell proliferation and differentiation is dependent on MAPK (ERK1/2) signaling. Development (Cambridge, England) 128:5075–5084

    CAS  Google Scholar 

  • Lovicu FJ, McAvoy JW (2005) Growth factor regulation of lens development. Dev Biol 280:1–14

    PubMed  CAS  Google Scholar 

  • Martinez-Wittinghan FJ, Sellitto C, Li L, Gong X, Brink PR, Mathias RT, White TW (2003) Dominant cataracts result from incongruous mixing of wild-type lens connexins. J Cell Biol 161:969–978

    PubMed  CAS  Google Scholar 

  • Mathias RT, Rae JL (2004) The lens:local transport and global transparency. Exp Eye Res 78:689–698

    PubMed  CAS  Google Scholar 

  • Mathias RT, Riquelme G, Rae JL (1991) Cell to cell communication and pH in the frog lens. J Gen Physiol 98:1085–1103

    PubMed  CAS  Google Scholar 

  • Mathias RT, Rae JL, Baldo GJ (1997) Physiological properties of the normal lens. Physiol Rev 77:21–50

    PubMed  CAS  Google Scholar 

  • Mathias RT, Kistler J, Donaldson P (2007) The lens circulation. J Membr Biol 216:1–16

    PubMed  CAS  Google Scholar 

  • McAvoy JW (1980) Induction of the eye lens. Differentiation 17:137–149

    PubMed  CAS  Google Scholar 

  • McAvoy JW (1981) The spatial relationship between presumptive lens and optic vesicle/cup during early eye morphogenesis in the rat. Exp Eye Res 33:447–458

    PubMed  CAS  Google Scholar 

  • McAvoy JW, Chamberlain CG (1990) Growth factors in the eye. Prog Growth Factor Res 2:29–43

    PubMed  CAS  Google Scholar 

  • McAvoy JW, Chamberlain CG, de Iongh RU, Hales AM, Lovicu FJ (1999) Lens development. Eye (London, England) 13:(Pt 3b):425–437

    Google Scholar 

  • Michea LF, de la Fuente M, Lagos N (1994) Lens major intrinsic protein (MIP) promotes adhesion when reconstituted into large unilamellar liposomes. Biochemistry 33:7663–7669

    PubMed  CAS  Google Scholar 

  • Michea LF, Andrinolo D, Ceppi H, Lagos N (1995) Biochemical evidence for adhesion-promoting role of major intrinsic protein isolated from both normal and cataractous human lenses. Exp Eye Res 61:293–301

    PubMed  CAS  Google Scholar 

  • Mitsuoka K, Murata K, Walz T, Hirai T, Agre P, Heymann JB, Engel A, Fujiyoshi Y (1999) The structure of aquaporin-1 at 4.5-A resolution reveals short alpha-helices in the center of the monomer. J Struct Biol 128:34–43

    PubMed  CAS  Google Scholar 

  • Modesto E, Lampe PD, Ribeiro MC, Spray DC, Campos de Carvalho AC (1996) Properties of chicken lens MIP channels reconstituted into planar lipid bilayers. J Membr Biol 154:239–249

    PubMed  CAS  Google Scholar 

  • Muggleton-Harris AL, Festing MF, Hall M (1987) A gene location for the inheritance of the cataract Fraser (CatFr) mouse congenital cataract. Genet Res 49:235–238

    PubMed  CAS  Google Scholar 

  • Mulders JW, Stokkermans J, Leunissen JA, Benedetti EL, Bloemendal H, de Jong WW (1985) Interaction of alpha-crystallin with lens plasma membranes. Affinity for MP26. Eur J Biochem/FEBS 152:721–728

    CAS  Google Scholar 

  • Mulders SM, Preston GM, Deen PM, Guggino WB, van Os CH, Agre P (1995) Water channel properties of major intrinsic protein of lens. J Biol Chem 270:9010–9016

    PubMed  CAS  Google Scholar 

  • Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, Fujiyoshi Y (2000) Structural determinants of water permeation through aquaporin-1. Nature 407:599–605

    PubMed  CAS  Google Scholar 

  • Nakatsukasa K, Brodsky JL (2008) The recognition and retrotranslocation of misfolded proteins from the endoplasmic reticulum. Traffic (Copenhagen, Denmark) 9:861–870

    CAS  Google Scholar 

  • Nemeth-Cahalan KL, Hall JE (2000) pH and calcium regulate the water permeability of aquaporin 0. J Biol Chem 275:6777–6782

    PubMed  CAS  Google Scholar 

  • Nemeth-Cahalan KL, Kalman K, Hall JE (2004) Molecular basis of pH and Ca2+ regulation of aquaporin water permeability. J Gen Physiol 123:573–580

    PubMed  CAS  Google Scholar 

  • Nemeth-Cahalan KL, Kalman K, Froger A, Hall JE (2007) Zinc modulation of water permeability reveals that aquaporin 0 functions as a cooperative tetramer. J Gen Physiol 130:457–464

    PubMed  CAS  Google Scholar 

  • Oka M, Kudo H, Sugama N, Asami Y, Takehana M (2008) The function of filensin and phakinin in lens transparency. Mol Vis 14:815–822

    PubMed  CAS  Google Scholar 

  • Okamura T, Miyoshi I, Takahashi K, Mototani Y, Ishigaki S, Kon Y, Kasai N (2003) Bilateral congenital cataracts result from a gain-of-function mutation in the gene for aquaporin-0 in mice. Genomics 81:361–368

    PubMed  CAS  Google Scholar 

  • Pal JD, Berthoud VM, Beyer EC, Mackay D, Shiels A, Ebihara L (1999) Molecular mechanism underlying a Cx50-linked congenital cataract. Am J Physiol (Cell Physiol 45) 276:C1443–C1446

    CAS  Google Scholar 

  • Palanivelu DV, Kozono DE, Engel A, Suda K, Lustig A, Agre P, Schirmer T (2006) Co-axial association of recombinant eye lens aquaporin-0 observed in loosely packed 3D crystals. J Mol Biol 355:605–611

    PubMed  CAS  Google Scholar 

  • Park JH, Saier MH Jr (1996) Phylogenetic characterization of the MIP family of transmembrane channel proteins. J Membr Biology 153:171–180

    CAS  Google Scholar 

  • Paul DL, Goodenough DA (1983a) In vitro synthesis and membrane insertion of bovine MP26, an integral protein from lens fiber plasma membrane. J Cell Biol 96:633–638

    CAS  Google Scholar 

  • Paul DL, Goodenough DA (1983b) Preparation, characterization, and localization of antisera against bovine MP26, an integral protein from lens fiber plasma membrane. J Cell Biol 96:625–632

    CAS  Google Scholar 

  • Paul DL, Ebihara L, Takemoto LJ, Swenson KI, Goodenough DA (1991) Connexin46, a novel lens gap junction protein, induces voltage-gated currents in nonjunctional plasma membrane of Xenopus oocytes. J Cell Biol 115:1077–1089

    PubMed  CAS  Google Scholar 

  • Peracchia C, Lazrak A, Peracchia LL (1994) Molecular models of channel interaction and gating in gap junctions. In:Peracchia C (ed.) Handbook of membrane channels, molecular and cellular physiology Academic Press, San Diego, CA, pp. 361–377

    Google Scholar 

  • Perng MD, Quinlan RA (2005) Seeing is believing! The optical properties of the eye lens are dependent upon a functional intermediate filament cytoskeleton. Exp Cell Res 305:1–9

    PubMed  CAS  Google Scholar 

  • Perng MD, Zhang Q, Quinlan RA (2007) Insights into the beaded filament of the eye lens. Exp Cell Res 313:2180–2188

    PubMed  CAS  Google Scholar 

  • Piatigorsky J (1981) Lens differentiation in vertebrates. A review of cellular and molecular features. Differentiation 19:134–153

    PubMed  CAS  Google Scholar 

  • Pisano MM, Chepelinsky AB (1991) Genomic cloning, complete nucleotide sequence, and structure of the human gene encoding the major intrinsic protein (MIP) of the lens. Genomics 11:981–990

    PubMed  CAS  Google Scholar 

  • Preston GM, Carroll TP, Guggino WB, Agre P (1992) Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science (New York, NY) 256:385–387

    CAS  Google Scholar 

  • Quinlan RA, Sandilands A, Procter JE, Prescott AR, Hutcheson AM, Dahm R, Gribbon C, Wallace P, Carter JM (1999) The eye lens cytoskeleton. Eye (London, England) 13:(Pt. 3b)409–416

    Google Scholar 

  • Ramaekers FC, Selten-Versteegen AM, Bloemendal H (1980) Interaction of newly synthesized alpha-crystallin with isolated lens plasma membranes. Biochim Biophys Acta 596:57–63

    PubMed  CAS  Google Scholar 

  • Reizer J, Reizer A, Jr Saier MH (1993) The MIP family of integral membrane channel proteins:sequence comparisons, evolutionary relationships, reconstructed pathway of evolution, and proposed functional differentiation of the two repeated halves of the proteins. Crit Rev Biochem Mol Biol 28:235–257

    PubMed  CAS  Google Scholar 

  • Reza HM, Yasuda K (2004a) Lens differentiation and crystallin regulation:a chick model. Int J Dev Biol 48:805–817

    CAS  Google Scholar 

  • Reza HM, Yasuda K (2004b) Roles of Maf family proteins in lens development. Dev Dyn 229:440–448

    CAS  Google Scholar 

  • Robinson ML (2006) An essential role for FGF receptor signaling in lens development. Semin Cell Dev Biol 17:726–740

    PubMed  CAS  Google Scholar 

  • Robinson ML, Ohtaka-Maruyama C, Chan CC, Jamieson S, Dickson C, Overbeek PA, Chepelinsky AB (1998) Disregulation of ocular morphogenesis by lens-specific expression of FGF-3/int-2 in transgenic mice. Dev Biol 198:13–31

    PubMed  CAS  Google Scholar 

  • Rong P, Wang X, Niesman I, Wu Y, Benedetti LE, Dunia I, Levy E, Gong X (2002) Disruption of Gja8 (alpha8 connexin) in mice leads to microphthalmia associated with retardation of lens growth and lens fiber maturation. Development (Cambridge, England) 129:167–174

    CAS  Google Scholar 

  • Rose KM, Wang Z, Magrath GN, Hazard ES, Hildebrandt JD, Schey KL (2008) Aquaporin 0-calmodulin interaction and the effect of aquaporin 0 phosphorylation. Biochemistry 47:339–347

    PubMed  CAS  Google Scholar 

  • Sanders CR, Myers JK (2004) Disease-related misassembly of membrane proteins. Annu Rev Bio-phys Biomol Struct 33:25–51

    CAS  Google Scholar 

  • Sandilands A, Hutcheson AM, Long HA, Prescott AR, Vrensen G, Loster J, Klopp N, Lutz RB, Graw J, Masaki S, Dobson CM, MacPhee CE, Quinlan RA (2002) Altered aggregation properties of mutant gamma-crystallins cause inherited cataract. EMBO J 21:6005–6014

    PubMed  CAS  Google Scholar 

  • Sandilands A, Prescott AR, Wegener A, Zoltoski RK, Hutcheson AM, Masaki S, Kuszak JR, Quinlan RA (2003) Knockout of the intermediate filament protein CP49 destabilizes the lens fiber cell cytoskeleton and decreases lens optical quality, but does not induce cataract. Exp Eye Res 76:385–391

    PubMed  CAS  Google Scholar 

  • Scaglione BA, Rintoul DA (1989) A fluorescence-quenching assay for measuring permeability of reconstituted lens MIP26. Invest Ophthalmol Vis Sci 30:961–966

    PubMed  CAS  Google Scholar 

  • Scheuring S, Buzhynskyy N, Jaroslawski S, Goncalves RP, Hite RK, Walz T (2007) Structural models of the supramolecular organization of AQP0 and connexons in junctional mi-crodomains. J Struct Biol 160:385–394

    PubMed  CAS  Google Scholar 

  • Scheuring S, Tittmann P, Stahlberg H, Ringler P, Borgnia M, Agre P, Gross H, Engel A (2000) The aquaporin sidedness revisited. J Mol Biol 299:1271–1278

    PubMed  CAS  Google Scholar 

  • Schey KL, Fowler JG, Schwartz JC, Busman M, Dillon J, Crouch RK (1997) Complete map and identification of the phosphorylation site of bovine lens major intrinsic protein. Invest Ophthal-mol Vis Sci 38:2508–2515

    CAS  Google Scholar 

  • Schey KL, Fowler JG, Shearer TR, David L (1999) Modifications to rat lens major intrinsic protein in selenite-induced cataract. Invest Ophthalmol Vis Sci 40:657–667

    PubMed  CAS  Google Scholar 

  • Schey KL, Little M, Fowler JG, Crouch RK (2000) Characterization of human lens major intrinsic protein structure. Invest Ophthalmol Vis Sci 41:175–182

    PubMed  CAS  Google Scholar 

  • Shearer D, Ens W, Standing K, Valdimarsson G (2008) Posttranslational modifications in lens fiber connexins identified by off-line-HPLC MALDI-quadrupole time-of-flight mass spectroscopy. Invest Ophthalmol Vis Sci 49:1553–1562

    PubMed  Google Scholar 

  • Shen L, Shrager P, Girsch SJ, Donaldson PJ, Peracchia C (1991) Channel reconstitution in lipo-somes and planar bilayers with HPLC-purified MIP26 of bovine lens. J Membr Biol 124:21–32

    PubMed  CAS  Google Scholar 

  • Shestopalov VI, Bassnett S (2003) Development of a macromolecular diffusion pathway in the lens. J Cell Sci 116:4191–4199

    PubMed  CAS  Google Scholar 

  • Shiels A, Bassnett S (1996) Mutations in the founder of the MIP gene family underlie cataract development in the mouse. Nat Genet 12:212–215

    PubMed  CAS  Google Scholar 

  • Shiels A, Griffin CS (1993) Aberrant expression of the gene for lens major intrinsic protein in the CAT mouse. Curr Eye Res 12:913–921

    PubMed  CAS  Google Scholar 

  • Shiels A, Hejtmancik JF (2007) Genetic origins of cataract. Arch Ophthalmol 125:165–173

    PubMed  CAS  Google Scholar 

  • Shiels A, Griffin CS, Muggleton-Harris AL (1991) Immunochemical comparison of the major intrinsic protein of eye-lens fiber cell membranes in mice with hereditary cataracts. Biochim Biophys Acta 1097:318–324

    PubMed  CAS  Google Scholar 

  • Shiels A, Mackay D, Bassnett S, Al-Ghoul K, Kuszak J (2000) Disruption of lens fiber cell architecture in mice expressing a chimeric AQP0-LTR protein. FASEB J 14:2207–2212

    PubMed  CAS  Google Scholar 

  • Shiels A, Bassnett S, Varadaraj K, Mathias R, Al-Ghoul K, Kuszak J, Donoviel D, Lilleberg S, Friedrich G, Zambrowicz B (2001) Optical dysfunction of the crystalline lens in aquaporin-0-deficient mice. Physiol Genom 7:179–186

    CAS  Google Scholar 

  • Sidjanin DJ, Parker-Wilson DM, Neuhauser-Klaus A, Pretsch W, Favor J, Deen PM, Ohtaka-Maruyama C, Lu Y, Bragin A, Skach WR, Chepelinsky AB, Grimes PA, Stambolian DE (2001) A 76-bp deletion in the Mip gene causes autosomal dominant cataract in Hfi mice. Genomics 74:313–319

    PubMed  CAS  Google Scholar 

  • Sivak JG, Herbert KL, Peterson KL, Kuszak JR (1994) The interrelationship of lens anatomy and optical quality. I. Non-primate lenses. Exp Eye Res 59:505–520

    CAS  Google Scholar 

  • Stamer WD, Snyder RW, Smith BL, Agre P, Regan JW (1994) Localization of aquaporin CHIP in the human eye:implications in the pathogenesis of glaucoma and other disorders of ocular fluid balance. Invest Ophthalmol Vis Sci 35:3867–3872

    PubMed  CAS  Google Scholar 

  • Swamy MS, Abraham EC (1992) Glycation of lens MIP26 affects the permeability in reconstituted liposomes. Biochem Biophys Res Commun 186:632–638

    PubMed  CAS  Google Scholar 

  • Swamy-Mruthinti S (2001) Glycation decreases calmodulin binding to lens transmembrane protein, MIP. Biochim Biophys Acta 1536:64–72

    PubMed  CAS  Google Scholar 

  • Swamy-Mruthinti S, Schey KL (1997) Mass spectroscopic identification of in vitro glycated sites of MIP. Curr Eye Res 16:936–941

    PubMed  CAS  Google Scholar 

  • Swenson KI, Jordan JR, Beyer EC, Paul DL (1989) Formation of gap junctions by expression of connexins in Xenopus oocyte pairs. Cell 57:145–155

    PubMed  CAS  Google Scholar 

  • Takemoto L, Takehana M (1986a) Covalent change of major intrinsic polypeptide (MIP26K) of lens membrane during human senile cataractogenesis. Biochem Biophys Res Commun 135:965–971

    CAS  Google Scholar 

  • Takemoto L, Takehana M (1986b) Major intrinsic polypeptide (MIP26K) from human lens membrane: characterization of low-molecular-weight forms in the aging human lens. Exp Eye Res 43:661–667

    CAS  Google Scholar 

  • Takemoto L, Takehana M, Horwitz J (1986a) Antisera to synthetic peptides of MIP26K as probes of membrane changes during human cataractogenesis. Exp Eye Res 42:497–501

    CAS  Google Scholar 

  • Takemoto L, Takehana M, Horwitz J (1986b) Covalent changes in MIP26K during aging of the human lens membrane. Invest Ophthalmol Vis Sci 27:443–446

    CAS  Google Scholar 

  • Takemoto L, Kodama T, Takemoto D (1987a) Antisera to synthetic peptides of MIP26K as probes of changes in opaque vs. transparent regions within the same human cataractous lens. Exp Eye Res 45:179–183

    CAS  Google Scholar 

  • Takemoto L, Smith J, Kodama T (1987b) Major intrinsic polypeptide (MIP26K) of the lens membrane: covalent change in an internal sequence during human senile cataractogenesis. Biochem Biophys Res Commun 142:761–766

    CAS  Google Scholar 

  • Takemoto L, Kuck J, Kuck K (1988) Changes in the major intrinsic polypeptide (MIP26K) during opacification of the Emory mouse lens. Exp Eye Res 47:329–336

    PubMed  CAS  Google Scholar 

  • Takemoto LJ, Gorthy WC, Morin CL, Steward DE (1991) Changes in lens membrane major intrinsic polypeptide during cataractogenesis in aged Hannover Wistar rats. Invest Ophthalmol Vis Sci 32:556–561

    PubMed  CAS  Google Scholar 

  • Varadaraj K, Kushmerick C, Baldo GJ, Bassnett S, Shiels A, Mathias RT (1999) The role of MIP in lens fiber cell membrane transport. J Membr Biol 170:191–203

    PubMed  CAS  Google Scholar 

  • Varadaraj K, Kumari S, Shiels A, Mathias RT (2005) Regulation of aquaporin water permeability in the lens. Invest Ophthalmol Vis Sci 46:1393–1402

    PubMed  Google Scholar 

  • Varadaraj K, Kumari SS, Mathias RT (2007) Functional expression of aquaporins in embryonic, postnatal, and adult mouse lenses. Dev Dyn 236:1319–1328

    PubMed  CAS  Google Scholar 

  • Varadaraj K, Kumari SS, Patil R, Wax MB, Mathias RT (2008) Functional characterization of a human aquaporin 0 mutation that leads to a congenital dominant lens cataract. Exp Eye Res 87:9–21

    PubMed  CAS  Google Scholar 

  • Vermorken AJ, Hilderink JM, Dunia I, Benedetti EL, Bloemendal H (1977) Changes in membrane protein pattern in relation to lens cell differentiation. FEBS Lett 83:301–306

    PubMed  CAS  Google Scholar 

  • Vihtelic TS, Fadool JM, Gao J, Thornton KA, Hyde DR, Wistow G (2005) Expressed sequence tag analysis of zebrafish eye tissues for NEIBank. Mol Vis 11:1083–1100

    PubMed  CAS  Google Scholar 

  • Virkki LV, Cooper GJ, Boron WF (2001) Cloning and functional expression of an MIP (AQP0) homolog from killifish (Fundulus heteroclitus) lens. Am J Physiol Regul Integr Comp Physiol 281:R1994–R2003

    PubMed  CAS  Google Scholar 

  • Walz T, Hirai T, Murata K, Heymann JB, Mitsuoka K, Fujiyoshi Y, Smith BL, Agre P, Engel A (1997) The three-dimensional structure of aquaporin-1. Nature 387:624–627

    PubMed  CAS  Google Scholar 

  • Webb KF, Donaldson PJ (2008) Differentiation-dependent changes in the membrane properties of fiber cells isolated from the rat lens. Am J Physiol 294:C1133–C1145

    CAS  Google Scholar 

  • White TW (2002) Unique and redundant connexin contributions to lens development. Science (New York, NY) 295:319–320

    CAS  Google Scholar 

  • White TW, Bruzzone R, Goodenough DA, Paul DL (1992) Mouse Cx50, a functional member of the connexin family of gap junction proteins, is the lens fiber protein MP70. Mol Biol Cell 3:711–720

    PubMed  CAS  Google Scholar 

  • Wistow GJ, Pisano MM, Chepelinsky AB (1991) Tandem sequence repeats in transmembrane channel proteins. Trends Biochem Sci 16:170–171

    PubMed  CAS  Google Scholar 

  • Xia CH, Cheng C, Huang Q, Cheung D, Li L, Dunia I, Benedetti LE, Horwitz J, Gong X (2006a) Absence of alpha3 (Cx46) and alpha8 (Cx50) connexins leads to cataracts by affecting lens inner fiber cells. Exp Eye Res 83:688–696

    CAS  Google Scholar 

  • Xia CH, Liu H, Cheung D, Cheng C, Wang E, Du X, Beutler B, Lo WK, Gong X (2006b) Diverse gap junctions modulate distinct mechanisms for fiber cell formation during lens development and cataractogenesis. Development (Cambridge, England) 133:2033–2040

    CAS  Google Scholar 

  • Yancey SB, Koh K, Chung J, Revel JP (1988) Expression of the gene for main intrinsic polypep- tide (MIP): separate spatial distributions of MIP and beta-crystallin gene transcripts in rat lens development. J Cell Biol 106:705–714

    PubMed  CAS  Google Scholar 

  • Yu XS, Jiang JX (2004) Interaction of major intrinsic protein (aquaporin-0) with fiber connexins in lens development. J Cell Sci 117:871–880

    PubMed  CAS  Google Scholar 

  • Yu XS, Yin X, Lafer EM, Jiang JX (2005) Developmental regulation of the direct interaction between the intracellular loop of connexin 45.6 and the C terminus of major intrinsic protein (aquaporin-0). J Cell Biol 280:22081–22090

    CAS  Google Scholar 

  • Zampighi G, Simon SA, Robertson JD, McIntosh TJ, Costello MJ (1982) On the structural organization of isolated bovine lens fiber junctions. J Cell Biol 93:175–189

    PubMed  CAS  Google Scholar 

  • Zampighi GA, Hall JE, Ehring GR, Simon SA (1989) The structural organization and protein composition of lens fiber junctions. J Cell Biol 108:2255–2275

    PubMed  CAS  Google Scholar 

  • Zampighi GA, Eskandari S, Hall JE, Zampighi L, Kreman M (2002) Micro-domains of AQP0 in lens equatorial fibers. Exp Eye Res 75:505–519

    PubMed  CAS  Google Scholar 

  • Zwaan J, Williams RM (1968) Morphogenesis of the eye lens in a mouse strain with hereditary cataracts. J Exp Zool 169:407–421

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana B. Chepelinsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chepelinsky, A.B. (2009). Structural Function of MIP/Aquaporin 0 in the Eye Lens; Genetic Defects Lead to Congenital Inherited Cataracts. In: Beitz, E. (eds) Aquaporins. Handbook of Experimental Pharmacology, vol 190. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79885-9_14

Download citation

Publish with us

Policies and ethics