Skip to main content

Neural Network Estimation of Suspended Sediment: Potential Pitfalls and Future Directions

  • Chapter
Practical Hydroinformatics

Part of the book series: Water Science and Technology Library ((WSTL,volume 68))

Abstract

This chapter examines two neural network approaches for modelling suspended sediment concentration at different temporal scales: daily-record and flood-event. Four daily-record models are developed for the USGS gauging station at Quebrada Blanca near Jagual in Puerto Rico previously used by kisi (2005) for estimating suspended sediment concentration: comparisons with that earlier investigation are presented. The flood-event approach is trialled on records for the EA gauging station at Low Moor on the River Tees in northern England. The power of neural networks to perform different types of modelling operation and to develop reasonable results in the two test cases is highlighted. Event-based modelling of mean suspended sediment concentration is a novel concept that warrants further trialling and testing on different international catchments or data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahart RJ, Heppenstall, A.J, See LM (2007) Timing error correction procedure applied to neural network rainfall-runoff modelling. Hydrological Sciences Journal 52(3): 1–12.

    Article  Google Scholar 

  • Abrahart RJ, See LM (2007a) Neural network emulation of a rainfall-runoff model. Hydrology and Earth System Sciences Discussions 4: 287–326.

    Google Scholar 

  • Abrahart RJ, See LM (2007b) Neural network modelling of non-linear hydrological relationships. Hydrology and Earth System Sciences 11(5): 1563–1579.

    Google Scholar 

  • Abrahart RJ, White SM (2001) Modelling Sediment Transfer in Malawi. Comparing Backpropagation Neural Network Solutions Against a Multiple Linear Regression Benchmark Using Small Data Sets. Physics and. Chemistry of the Earth (B) 26(1): 19–24.

    Google Scholar 

  • Agarwal A, Singh RD, Mishra SK, Bhunya PK (2005) ANN-based sediment yield models for Vamsadhara river basin (India). Water SA 31(1): 95–100.

    Google Scholar 

  • Asselman NEM (2000) Fitting and interpretation of sediment rating curves. Journal of Hydrology 234(3–4): 228–248.

    Article  Google Scholar 

  • Bellwood DR, Hughes TP, Folke C, Nyström M (2004) Confronting the coral reef crisis. Nature 429(24): 827–833.

    Article  Google Scholar 

  • Boose ER, Serrano MI, Foster DR. (2004) Landscape and Regional Impacts of Hurricanes in Puerto Rico, Ecological Monographs 74(2): 335–352.

    Article  Google Scholar 

  • Chikita KH, Kemnitz R, Kumai R (2002) Characteristics of sediment discharge in the subarctic Yukon River Alaska. Catena 48(4): 235–253.

    Article  Google Scholar 

  • Cigizoglu HK (2002a) Suspended sediment estimation and forecasting using artificial neural networks. Turkish Journal of Engineering and Environmental Sciences 26(1): 16–26.

    Google Scholar 

  • Cigizoglu HK (2002b) Suspended sediment estimation for rivers using artificial neural networks and sediment rating curves. Turkish Journal of Engineering and Environmental Sciences 26(1): 27–36.

    Google Scholar 

  • Cigizoglu HK (2004) Estimation and forecasting of daily suspended sediment data by multi-layer perceptrons. Advances in Water Resources 27(2): 185–195.

    Article  Google Scholar 

  • Cigizoglu HK, Kisi O (2006) Methods to improve the neural network performance in suspended sediment estimation. Journal of Hydrology 317(3–4): 221–238.

    Google Scholar 

  • Coppus R, Imeson AC (2002) Extreme events controlling erosion and sediment transport in a semi-arid sub-Andean Valley. Earth Surface Processes and Landforms 27(13): 1365–1375.

    Article  Google Scholar 

  • Crowder DW, Demissie M, Markus M (2007) The accuracy of sediment loads when log-transformation produces nonlinear sediment load-discharge relationships. Journal of Hydrology 336(3–4): 250–268.

    Article  Google Scholar 

  • Curry B, Morgan PH (2003) Neural networks, linear functions and neglected non-linearity. Computational Management Science 1(1): 15–29.

    Article  Google Scholar 

  • Dawson CW, See LM, Abrahart RJ, Heppenstall AJ (2006) Symbiotic adaptive neuro-evolution applied to rainfall-runoff modelling in northern England. Neural Networks 19(2): 236–247.

    Article  Google Scholar 

  • De Vries A, Klavers HC (1994) Riverine fluxes of pollutants: monitoring strategy first, calculation methods second. European Journal of Water Pollution Control 4(2): 12–17.

    Google Scholar 

  • Duan N (1983) Smearing estimate: a nonparametric retransformation method. Journal of the American Statistical Society 78(383): 605–610.

    Google Scholar 

  • Fenn CR, Gurnell AM, Beecroft IR (1985) An evaluation of the use of suspended sediment rating curves for the prediction of suspended sediment concentration in a proglacial stream. Geografiska Annaler (A) 67(1–2): 71–82.

    Article  Google Scholar 

  • Ferguson RI (1986) River loads underestimated by rating curves. Water Resources Research 22(1): 74–76.

    Article  Google Scholar 

  • Fransen PJB, Phillips CJ, Fahey BD (2001) Forest road erosion in New Zealand: overview. Earth Surface Processes and Landforms 26(2): 165–174.

    Article  Google Scholar 

  • Giustolisi O, Laucelli D (2005) Increasing generalisation of input-output artificial neural networks in rainfall-runoff modelling. Hydrological Sciences Journal 50(3): 439–457.

    Article  Google Scholar 

  • Hansen NC, Daniel TC, Sharpley AN, Lemunyon JL (2002) The fate and transport of phosphorus in agricultural systems. Journal of Soil Water Conservation 57(6): 408–417.

    Google Scholar 

  • Hao C, Qiangguo C (2006) Impact of hillslope vegetation restoration on gully erosion induced sediment yield. Science in China Series D: Earth Sciences 49(2): 176–192.

    Article  Google Scholar 

  • Heppenstall AJ, See LM, Abrahart RJ, Dawson CW (2008) Neural Network Hydrological Modelling: An evolutionary approach. In: Abrahart RJ, See LM, Solomatine DP (eds) Practical Hydroinformatics: computational intelligence and technological developments in water applications. Springer-Verlag.

    Google Scholar 

  • Hicks, DM, Gomez B (2003) Sediment Transport. In: Kondolf GM, Piégay H (eds) Tools in Fluvial Geomorphology. John Wiley & Sons Ltd., Chichester, UK, 425–461.

    Chapter  Google Scholar 

  • Holtschlag DJ (2001) Optimal estimation of suspended-sediment concentrations in streams. Hydrological Processes 15(7): 1133–1155.

    Article  Google Scholar 

  • Horn J, Goldberg DE, Deb K (1994) Implicit niching in a learning classifier system: Nature’s way. Evolutionary Computation 2(1): 27–66.

    Article  Google Scholar 

  • Horowitz AJ (1995) The Use of Suspended Sediment and Associated Trace Elements in Water Quality Studies. IAHS Special Publication No. 4, IAHS Press: Wallingford, UK; 58 pp.

    Google Scholar 

  • Horowitz AJ (2003) An evaluation of sediment rating curves for estimating suspended sediment concentrations for subsequent flux calculations. Hydrological Processes 17(17): 3387–3409.

    Article  Google Scholar 

  • Jain SK (2001) Development of integrated sediment rating curves using ANNs. Journal of Hydraulic Engineering 127(1): 30–37.

    Article  Google Scholar 

  • Jang J-SR (1993) ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Transactions on Systems, Man, and Cybernetics 23(3): 665–685.

    Article  Google Scholar 

  • Keyes AM, Radcliffe D (2002) A Protocol for Establishing Sediment TMDLs. The Georgia Conservancy: Atlanta, GA, USA; 31 pp. http://www.georgiaconservancy.org/ WaterQuality/GA_CON%20QXD.pdf

    Google Scholar 

  • Kisi O (2004) Multi-layer perceptrons with Levenberg-Marquardt training algorithm for suspended sediment concentration prediction and estimation. Hydrological Sciences Journal 49(6): 1025–1040.

    Article  Google Scholar 

  • Kisi O (2005) Suspended sediment estimation using neuro-fuzzy and neural network approaches. Hydrological Sciences Journal 50(4): 683–696.

    Article  Google Scholar 

  • Krishnaswamy J, Richter DD, Halpin PN, Hofmockel MS (2001) Spatial patterns of suspended sediment yields in a humid tropical watershed in Costa Rica. Hydrological Processes 15(12): 2237–2257.

    Article  Google Scholar 

  • Labadz JC, Butcher DP, Potter AWR, White P (1995) The delivery of sediment in upland reservoir systems. Physics and Chemistry of the Earth 20(2): 191–197.

    Article  Google Scholar 

  • Lenzi MA, Marchi L (2000) Suspended sediment load during floods in a small stream of the Dolomites (northeastern Italy). Catena 39(4): 267–282.

    Article  Google Scholar 

  • Lopes VL, Folliott PF, and Baker Jr MB (2001) Impacts of vegetative practices on suspended sediment from watersheds in Arizona. Journal of Water Resources Planning and Management 127(1): 41–47.

    Article  Google Scholar 

  • MacDonald LH, Sampson RW, Anderson DM (2001) Runoff and road erosion at the plot and road segment scales, St John, US Virgin Islands. Earth Surface Processes and Landforms 26(3): 251–272.

    Article  Google Scholar 

  • Marks SD, Rutt GP (1997) Fluvial sediment inputs to upland gravel bed rivers draining forested catchments: potential ecological impacts, Hydrology and Earth System Sciences 1(3): 499–508.

    Article  Google Scholar 

  • Merritt WS, Letcher RA, Jakeman AJ (2003) A review of erosion and sediment transport models. Environmental Modelling & Software 18(8–9): 761–799.

    Article  Google Scholar 

  • Morgan RPC (1986) Soil Erosion and Conservation. Longman, London.

    Google Scholar 

  • Moriarty DE, Miikkulainen R (1998) Forming neural networks through efficient and adaptive coevolution. Evolutionary Computation 5(4): 373–399.

    Article  Google Scholar 

  • Milner NJ, Scullion J, Carling PA, Crisp DT (1981) A review of the effects of discharge on sediment dynamics and consequent effects on invertebrates and salmonids in upland rivers. Advances in Applied Biology 6: 153–220.

    Google Scholar 

  • Nagy HM, Watanabe K, Hirano M (2002) Prediction of sediment load concentration in rivers using artificial neural network model. Journal of Hydraulic Engineering 128(6): 588–595.

    Article  Google Scholar 

  • Newcombe CP, Jensen JOT (1996) Channel suspended sediment and fisheries: a synthesis for quantitative assessment of risk and impact. North American Fisheries Management 16(4): 693–719.

    Article  Google Scholar 

  • Ottaway EM, Clarke A, Forrest DR (1981) Some Observations on Washout of Brown Trout (Salmo Trutta L.) Eggs in Teesdale Streams. Unpublished report, Freshwater Biological Association, Teesdale Unit, UK.

    Google Scholar 

  • Østrem G (1975) Sediment transport in glacial meltwater streams. In: Jopling AV, McDonald BC (eds) Glaciofluvial and Glaciolaustrine Sedimentation 23: 101–122 Society of Economic Paleontologists and Mineralogists Special Publication; 101pp.

    Google Scholar 

  • Phillips JM, Webb BW, Walling DE, Leeks GJL (1999) Estimating the suspended sediment loads of rivers in the LOIS study area using infrequent samples. Hydrological Processes 13(7): 1035–1050.

    Article  Google Scholar 

  • Potter MA (1997) The Design and Analysis of a Computational Model of Cooperative Coevolution. Unpublished PhD Thesis: George Mason University, Fairfax, Virginia, USA.

    Google Scholar 

  • Rosgen DL (1996) Applied River Morphology. Wildland Hydrology Books, Pagosa Springs, Colorado, USA.

    Google Scholar 

  • Rosgen DL (2001) A hierarchical river stability watershed-based sediment assessment methodology. In: Proceedings of the Seventh Federal Interagency Sedimentation Conference, Reno Nevada, 97–106.

    Google Scholar 

  • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representations by error propagations. In: Rumelhart DE, McClelland JL (eds) Parallel Distributed Processing: Explorations in the Microstructures of Cognition. Vol 1. MIT Press, Cambridge, MA, USA, 318–362.

    Google Scholar 

  • Simon A, Hupp CR (1986) Channel Evolution in Modified Tennessee Streams. In: Proceedings of the Fourth Federal Interagency Sedimentation Conference, Las Vegas, Nevada, 5.71–5.82

    Google Scholar 

  • Stott T, Mount N (2004) Plantation forestry impacts on sediment yields and downstream channel dynamics in the UK: a review. Progress in Physical Geography 28(2): 197–240.

    Article  Google Scholar 

  • Sturges DL (1992) Streamflow and sediment transport responses to snow fencing a rangeland watershed. Water Resources Research 28(5): 1347–1356.

    Article  Google Scholar 

  • Thomas RB (1985) Estimating total suspended sediment yield with probability sampling. Water Resources Research 21(9): 1381–1388.

    Article  Google Scholar 

  • Thomas RB (1991) Systematic sampling for suspended sediment. In: Proceedings of the Fifth Federal Interagency Sedimentation Conference, Advisory Committee on Water Data, 2–17 to 2-24.

    Google Scholar 

  • Thomas RB, Lewis J (1993) A comparison of selection at list time and time-stratified sampling for estimating suspended sediment loads. Water Resources Research 29(4): 1247–1256.

    Article  Google Scholar 

  • Thomas RB, Lewis J (1995) An evaluation of flow-stratified sampling for estimating suspended sediment loads. Journal of Hydrology 170(1): 27–45.

    Article  Google Scholar 

  • US Environmental Protection Agency (1980) An Approach to Water Resource Evaluation of Non-point Silvicultural Sources. EPA-600/8-80-012, Athens, GA, USA, [http://www.epa.gov/warsss/rrisc/handbook.htm]

    Google Scholar 

  • Walling DE, Webb BW (1988) The reliability of rating curve estimates of suspended sediment yield; some further comments. In: Bordas MP, Walling DE (eds), Sediment Budgets. IAHS Publication No. 174, IAHS Press, Wallingford, UK, 337–350.

    Google Scholar 

  • Walling DE (1999) Linking land use, erosion and sediment yields in river basins. Hydrobiologia 410(1): 223–240.

    Article  Google Scholar 

  • Walling DE, Fang D (2003) Recent trends in the suspended sediment loads of the world rivers. Global Planetary Change 39(1–2): 111–126.

    Article  Google Scholar 

  • Warne AG, Webb RMT, Larsen MC (2005) Water, Sediment, and Nutrient Discharge Characteristics of Rivers in Puerto Rico, and their Potential Influence on Coral Reefs: U.S. Geological Survey Scientific Investigations Report 2005-5206, 58pp.

    Google Scholar 

  • White SM (2005) Sediment yield prediction and modelling. In: Anderson M. (ed) Encyclopaedia of Hydrological Sciences. John Wiley & Sons Ltd., Chichester, UK. doi:10.1002/0470848944.hsa089.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Abrahart, R., See, L., Heppenstall, A., White, S. (2009). Neural Network Estimation of Suspended Sediment: Potential Pitfalls and Future Directions. In: Abrahart, R.J., See, L.M., Solomatine, D.P. (eds) Practical Hydroinformatics. Water Science and Technology Library, vol 68. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79881-1_11

Download citation

Publish with us

Policies and ethics