Skip to main content

If also Ants Are Able...

  • Chapter
  • 429 Accesses

Part of the book series: Studies in Computational Intelligence ((SCI,volume 138))

Abstract

Learning, as a single value inference facility is unavoidably connected with an optimization problem. You fix a cost function compliant with your probability model, if any, and look for a solution in the parameter space that minimizes the function up to a given approximation. You search in the parameter space since you want to assess a function to be profitably used in the variable space. Otherwise you may be interested in optimizing a given function directly in the variable space. A typical example where the two optimization targets are in symbiosis is represented by the Boltzmann machines. You move along the increasing direction of the function (8.24) with the machine updating its state according to (8.22). When you are close to the maximum of this function you are close to the equilibrium, hence you may collect statistics feeding the learning rule in the parameter space. As a matter of fact, many optimization techniques do not change when you move from one space to the other, and we often speak of learning facility even when we are optimizing in the variable space. Actually with the same GA techniques you may learn the best fitting function by working on its code, like with the chromosome sequence determining our proteins. Thus learning is coming to achieve the widest acceptance of emergence of functionality, possibly specific - as the ability of optimizing a given function - possibly broad-band - as the ability of assessing an optimal function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agnati, L.F., Zoli, M., Stromberg, I., Fuxe, K.: Intercellular communication in the brain: wiring versus volume transmission. Neuroscience 69(3), 711–726 (1995)

    Article  Google Scholar 

  2. Amato, S., Apolloni, B., Caporali, P., Madesani, U., Zanaboni, A.M.: Simulated annealing in back-propagation. Neurocomputing 3, 207–220 (1991)

    Article  Google Scholar 

  3. Amit, D., Gutfreund, H., Sommpolinsky, H.: Sping-glass models of neural networks. Physical Review A32, 1007–1018 (1985)

    Article  Google Scholar 

  4. Apolloni, B., Armelloni, A., Bollani, G., de Falco, D.: Some experimental results on asymmetric boltzmann machines. In: Garrido, M.S., Vilela Mendes, R. (eds.) Complexity in Physics and Technology, pp. 151–166. World Scientific, Singapore (1992)

    Google Scholar 

  5. Apolloni, B., Avanzini, G., Cesa-Bianchi, N., Ronchine, G.: Diagnosis of epilepsy via backpropagation. In: Proceedings of International Joint Conference on Neural Networks, Washington D.C., vol. II, pp. 517–574 (1990)

    Google Scholar 

  6. Apolloni, B., Bassis, S.: A feedforward neural logic based on synaptic and volume transmission. Brain Research Reviews 55(1), 108–118 (2007)

    Article  MathSciNet  Google Scholar 

  7. Apolloni, B., Battini, F., Lucisano, C.: A co-operating neural approach for spacecrafts attitude control. Neurocomputing 16(4), 279–307 (1997)

    Article  Google Scholar 

  8. Apolloni, B., Piccolboni, A., Sozio, E.: A hybrid symbolic subsymbolic controller for complex dynamic systems. Neurocomputing 37, 127–163 (2001)

    Article  MATH  Google Scholar 

  9. Applegate, D.L., Bixby, R.E., Chvàtal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton University Press, Princeton (2006)

    MATH  Google Scholar 

  10. Biggs, N.L., LLoyd, E.K., Wilson, R.J.: Graph Theory. Clarendon Press, Oxford (1976)

    MATH  Google Scholar 

  11. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1986)

    Google Scholar 

  12. Brownlee, J.: Optimization Algorithm Toolkit (OAT), Swinburne University of Technology (2006), http://optalgtoolkit.sourceforge.net/

  13. Cesana, E., Beltrami, S., Laface, A.E., Urthaler, A., Folci, A., Clivio, A.: Current paradigms in immunology. In: Proceedings of Natural and Artificial Immune Systems (WIRN/NAIS) 2005, pp. 244–260 (2005)

    Google Scholar 

  14. Condorcet, M.J.A.N., de Caritat, M.: Essai sur l’application de l’analyse à la probabilitè des décisions rendues à la pluralitè des voix. l’Imprimerie Royale, 1–304 (1785)

    Google Scholar 

  15. de Castro, L.N., Timmis, J.: Artificial Immune Systems: A New Computational Approach. Springer, London (2002)

    MATH  Google Scholar 

  16. de Castro, L.N., Von Zuben, F.J.: ainet: An artificial immune network for data analysis. In: Sarker, R.A., Abbass, H.A., Newton, C.S. (eds.) Data Mining: A Heuristic Approach, pp. 231–259. Idea Group Publishing, USA (2001)

    Google Scholar 

  17. De Jong, K.A.: Evolutionary Computation: A Unified Approach. Bradford Books. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  18. Dorigo, M.: Ant colonies for the traveling salesman problem. IEEE Transactions on Evolutionary Computation 1(1), 53–66 (1997)

    Article  Google Scholar 

  19. Dorigo, M., Stutzle, T.: Ant Colony Optimization, Bradford Books. MIT Press, Cambridge (2004)

    MATH  Google Scholar 

  20. Drucker, H., Schapire, R., Simard, P.: Boosting performance in neural networks. International Journal of Pattern Recognition and Artificial Intelligence 7(4), 705–719 (1993)

    Article  Google Scholar 

  21. Duch, W.: Towards comprehensive foundations of computational intelligence. In: Challenges for Computational Intelligence. Springer Studies in Computational Intelligence, vol. 63, pp. 261–316 (2007)

    Google Scholar 

  22. Eberhart, R.C., Shi, Y.: Particle swarm optimization: developments, applications and resources. In: Proceedings of Congress on Evolutionary Computation 2001, Piscataway, NJ, Seoul, Korea, IEEE service center, Los Alamitos (2001)

    Google Scholar 

  23. Eberhart, R.C., Shi, Y., Kennedy, J.: Swarm Intelligence. The Morgan Kaufmann Series in Artificial Intelligence. Hardcover (2001)

    Google Scholar 

  24. Efron, B., Tibshirani, R.: An introduction to the Boostrap. Chapman and Hall, Freeman, New York (1993)

    Google Scholar 

  25. Eslick, I.: Scratchtalk and social computation: Towards a natural language scripting model. In: IUI 2008 Workshop on Common Sense Knowledge and Goal-Oriented User Interfaces (CSKGOI 2008) (in press, 2008)

    Google Scholar 

  26. Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R.: Self-nonself discrimination in a computer. In: Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy, Oakland, CA, pp. 202–212. IEEE Computer Society Press, Los Alamitos (1994)

    Google Scholar 

  27. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. In: Proc. II European Conference on Computational Learning Theory, Barcellona (March 1995)

    Google Scholar 

  28. Freund, Y., Schapire, R.E.: A short introduction to boosting. Journal of Japanese Society for Artificial Intelligence 14(5), 771–780 (1999)

    Google Scholar 

  29. Gorman, R.P., Sejnowski, T.J.: Analysis of hidden units in a layered network trained to classify sonar targets. Neural Networks 1, 75–89 (1988)

    Article  Google Scholar 

  30. Griffiths, D.J.: Introduction to Quantum Mechanics, 2nd edn. Prentice-Hall, Englewood Cliffs (2004)

    Google Scholar 

  31. LaReN Group. Hybrid Learning System, University of Milan (2006), http://laren.usr.dsi.unimi.it/hybrid/index.html

  32. Hagan, M.T., Menhaj, M.: Training feedforward networks with the marquardt algorithm. IEEE Transactions on Neural Networks 5(6), 989–993 (1994)

    Article  Google Scholar 

  33. Ho, T.K.: The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(8), 832–844 (1998)

    Article  Google Scholar 

  34. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading (1979)

    MATH  Google Scholar 

  35. Hyvärinen, A., Kahunen, J., Oja, E.: Independent Component Analysis. John Wiley & Sons, Chichester (2001)

    Google Scholar 

  36. Johansson, E.M., Dowla, F.U., Goodman, D.M.: Backpropagation learning for multi-layer feed-forward neural networks using the conjugate gradient method. International Journal of Neural Systems 2(4), 291–301 (1992)

    Article  Google Scholar 

  37. Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm Intelligence. Morgan Kaufmann Publishers, San Francisco (2001)

    Google Scholar 

  38. Kim, H.C., Pang, S., Je, H.M., Kim, D., Bang, S.Y.: Constructing support vector machine ensemble. Pattern Recognition 36(12), 2757–2767 (2003)

    Article  MATH  Google Scholar 

  39. Kullback, S.: Information theory & statistics. Wiley, Chichester (1959)

    MATH  Google Scholar 

  40. Lamperti, J.: Stochastic processes: a survey of the mathematical theory. In: Applied mathematical sciences, vol. 23. Springer, New York (1977)

    Google Scholar 

  41. Lancaster, D.E.: Cmos Cookbook. Paperback (1997)

    Google Scholar 

  42. Levin, E., Tishby, N., Solla, S.A.: A statistical approach to learning and generalization in layered neural networks. In: Rivest, R., Haussler, D., Warmuth, M.K. (eds.) Proceedings of the Second Annual Workshop on Computational Learning Theory, pp. 245–260. Morgan Kaufmann, San Francisco (1989)

    Google Scholar 

  43. Littlestone, N., Warmuth, M.K.: The weighted majority algorithm. In: IEEE Symposium on Foundations of Computer Science, pp. 256–261 (1989)

    Google Scholar 

  44. Gambardella, L.M., Rizzoli, E., Oliverio, F., Casagrande, N., Donati, A., Montemanni, R., Lucibello, E.: Ant colony optimization for vehicle routing in advanced logistics systems. In: Proceedings of MAS 2003 - International Workshop on Modelling and Applied Simulation, Bergeggi, Italy, pp. 2–4 (2003)

    Google Scholar 

  45. Machiavelli, N.: Il Principe 1513

    Google Scholar 

  46. Matzinger, P.: Tolerance, danger, and the extended family. Annals Reviews of Immunology 12, 991–1045 (1994)

    Google Scholar 

  47. Milner, R.: Communicating and Mobile Systems: the π-Calculus. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  48. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1996)

    Google Scholar 

  49. Moody, A., Gopal, S., Strahler, A.H.: Artificial neural network response to mixed pixels in coarse-resolution satellite data. Remote Sensing of Environment 58(3), 329–343 (1996)

    Article  Google Scholar 

  50. Natural computing, an international journal

    Google Scholar 

  51. Novikoff, A.B.: On convergence proofs on perceptrons. In: Symposium on the Mathematical Theory of Automata, Polytechnic Institute of Brooklyn, vol. 12, pp. 615–622 (1962)

    Google Scholar 

  52. Parsopoulos, K.E., Vrahatis, M.N.: On the computation of all global minimizers through particle swarm optimization. IEEE Transactions on Evolutionary Computation 8(3), 211–224 (2004)

    Article  MathSciNet  Google Scholar 

  53. Pollack, J.B.: Recursive distributed representation. Artificial Intelligence 46, 77–105 (1990)

    Article  Google Scholar 

  54. Reinelt, G.: Traveling Salesman Problem Library, Heidenberg Univ. (1995), http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

  55. Roger, H.: Theory of recoursive functions and effective computability. McGraw-Hill, New York (1967)

    Google Scholar 

  56. Rumelhart, D.E. (ed.): Parallel Distributed Processing, vol. 1. MIT Press, Cambridge (1986)

    Google Scholar 

  57. Sahni, S.: Some related problems from network flows, game theory, and integer programming. In: Proceedings of the 13th Annual IEEE Symposium of Switching and Automata Theory, pp. 130–138 (1972)

    Google Scholar 

  58. Stuetzle, T.: Ant colony optimization algorithm for symmetric TSP (2004), http://www.aco-metaheuristic.org/aco-code

  59. Turing, A.: On computable numbers, with an application to the entscheidungs problem. Proceedings of the London Mathematical Society 42, 230–265 (1936)

    Article  MATH  Google Scholar 

  60. Wallace, D.L.: Asymptotic approximations to distributions. Annals of Mathematical Statistics 29, 635–654 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  61. Wilks, S.S.: Mathematical Statistics. Wiley Publications in Statistics. John Wiley, New York (1962)

    MATH  Google Scholar 

  62. Xie, X.F.: Mini Multiagent Optimization System (MAOS) for solving Combinatorial Optimization Problems, Hakodate, Japan (2006), http://www.adaptivebox.net/research/fields/problem/TSP/index.html

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Apolloni, B., Pedrycz, W., Bassis, S., Malchiodi, D. (2008). If also Ants Are Able.... In: The Puzzle of Granular Computing. Studies in Computational Intelligence, vol 138. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79864-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79864-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79863-7

  • Online ISBN: 978-3-540-79864-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics