Skip to main content

Central Mechanisms II: Pharmacology of Brainstem Pathways

  • Chapter
Book cover Pharmacology and Therapeutics of Cough

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 187))

Abstract

Following systemic administration, centrally acting antitussive drugs are generally assumed to act in the brainstem to inhibit cough. However, recent work in humans has raised the possibility of suprapontine sites of action for cough suppressants. For drugs that may act in the brainstem, the specific locations, types of neurones affected, and receptor specificities of the compounds represent important issues regarding their cough-suppressant actions. Two medullary areas that have received the most attention regarding the actions of antitussive drugs are the nucleus of the tractus solitarius (NTS) and the caudal ventrolateral respiratory column. Studies that have implicated these two medullary areas have employed both microinjection and in vitro recording methods to control the location of action of the antitussive drugs. Other brainstem regions contain neurones that participate in the production of cough and could represent potential sites of action of antitussive drugs. These regions include the raphe nuclei, pontine nuclei, and rostral ventrolateral medulla. Specific receptor subtypes have been associated with the suppression of cough at central sites, including 5-HT1A, opioid (μ, κ, and δ), GABA-B, tachykinin neurokinin-1 (NK-1) and neurokinin-2, non-opioid (NOP-1), cannabi-noid, dopaminergic, and sigma receptors. Aside from tachykinin NK-1 receptors in the NTS, relatively little is known regarding the receptor specificity of putative antitussive drugs in particular brainstem regions. Our understanding of the mechanisms of action of antitussive drugs would be significantly advanced by further work in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adcock JJ, Schneider C, Smith TW (1988) Effects of codeine, morphine and a novel opioid pen-tapeptide BW443C, on cough, nociception and ventilation in the unanaesthetized guinea-pig. Br J Pharmacol 93:93–100

    PubMed  CAS  Google Scholar 

  • Advenier C, Girard V, Naline E, Vilain P, Emonds-Alt X (1993) Antitussive effect of SR 48968, a non-peptide tachykinin NK2 receptor antagonist. Eur J Pharmacol 250:169–171

    Article  PubMed  CAS  Google Scholar 

  • Baekey DM, Morris KF, Gestreau C, Li Z, Lindsey BG, Shannon R (2001) Medullary respiratory neurones and control of laryngeal motoneurones during fictive eupnoea and cough in the cat. J Physiol 534:565–581

    Article  PubMed  CAS  Google Scholar 

  • Baekey DM, Morris KF, Nuding SC, Segers LS, Lindsey BG, Shannon R (2004) Ventrolateral medullary respiratory network participation in the expiration reflex in the cat. J Appl Physiol 96:2057–2072

    Article  PubMed  Google Scholar 

  • Bolser DC (1991) Fictive cough in the cat. J Appl Physiol 71:2325–2331

    PubMed  CAS  Google Scholar 

  • Bolser DC (1996) Mechanisms of action of central and peripheral antitussive drugs. Pulm Pharmacol 9: 357–364

    Article  PubMed  CAS  Google Scholar 

  • Bolser DC (2006) Current and future centrally acting antitussives. Respir Physiol Neurobiol 152:349–355

    Article  PubMed  CAS  Google Scholar 

  • Bolser DC, DeGennaro FC (1994) Effect of codeine on the inspiratory and expiratory burst pattern during fictive cough in cats. Brain Res 662:25–30

    Article  PubMed  CAS  Google Scholar 

  • Bolser DC, Aziz SM, DeGennaro FC, Kreutner W, Egan RW, Siegel MI, Chapman RW (1993) Antitussive effects of GABAB agonists in the cat and guinea-pig. Br J Pharmacol 110:491–495

    PubMed  CAS  Google Scholar 

  • Bolser DC, DeGennaro FC, O'Reilly S, Chapman RW, Kreutner W, Egan RW, Hey JA (1994) Peripheral and central sites of action of GABA-B agonists to inhibit the cough reflex in the cat and guinea pig. Br J Pharmacol 113:1344–1348

    PubMed  CAS  Google Scholar 

  • Bolser DC, Blythin DJ, Chapman RW, Egan RW, Hey JA, Rizzo C, Kuo SC, Kreutner W (1995) The pharmacology of SCH 50911: A novel, orally-active GABA-beta receptor antagonist. J Pharmacol Exp Ther 274:1393–1398

    PubMed  CAS  Google Scholar 

  • Bolser DC, DeGennaro FC, O'Reilly S, McLeod RL, Hey JA (1997) Central antitussive activity of the NK1 and NK2 tachykinin receptor antagonists, CP-99,994 and SR 48968, in the guinea-pig and cat. Br J Pharmacol 121:165–170

    Article  PubMed  CAS  Google Scholar 

  • Bolser DC, Hey JA, Chapman RW (1999) Influence of central antitussive drugs on the cough motor pattern. J Appl Physiol 86:1017–1024

    PubMed  CAS  Google Scholar 

  • Bolser DC, McLeod RL, Tulshian DB, Hey JA (2001) Antitussive action of nociceptin in the cat. Eur J Pharmacol 430:107–111

    Article  PubMed  CAS  Google Scholar 

  • Brown C, Fezoui M, Selig WM, Schwartz CE, Ellis JL (2004) Antitussive activity of sigma-1 receptor agonists in the guinea-pig. Br J Pharmacol 141:233–240

    Article  PubMed  CAS  Google Scholar 

  • Chapman RW, House A, Liu F, Celly C, Mei H, Hey JA (2004) Antitussive activity of the tachykinin NK1 receptor antagonist, CP-99994, in dogs. Eur J Pharmacol 485:329–332

    Article  PubMed  CAS  Google Scholar 

  • Chau TT, Carter FE, Harris LS (1983) Antitussive effect of the optical isomers of mu, kappa and sigma opiate agonists/antagonists in the cat. J Pharmacol Exp Ther 226:108–113

    PubMed  CAS  Google Scholar 

  • Chen CY, Bonham AC, Plopper CG, Joad JP (2003) Neuroplasticity in nucleus tractus solitarius neurons after episodic ozone exposure in infant primates. J Appl Physiol 94:819–827

    Google Scholar 

  • Chou D, Wang, SC (1975) Studies on the localization of the central cough mechanism: Site of action of antitussive drugs. J Pharmacol Exp Ther 194:499–505

    PubMed  CAS  Google Scholar 

  • Daoui S, Cognon C, Naline E, Emonds-Alt X, Advenier C (1998) Involvement of tachykinin NK3 receptors in citric acid-induced cough and bronchial responses in guinea pigs. Am J Respir Crit Care Med 158:42–48

    PubMed  CAS  Google Scholar 

  • Davenport PW, Bolser DC, Vickroy T, Berry RB, Martin AD, Hey JA, Danzig M (2007) The effect of codeine on the Urge-to-Cough response to inhaled capsaicin. Pulm Pharmacol Ther 20: 338–346

    Article  PubMed  CAS  Google Scholar 

  • Dicpinigaitis PV (1996) Use of baclofen to suppress cough induced by angiotensin-converting enzyme inhibitors. Ann Pharmacother 30:1242–1245

    PubMed  CAS  Google Scholar 

  • Dicpinigaitis PV, Dobkin JB (1997) Antitussive effect of the GABA-agonist baclofen. Chest 111:996–999

    Article  PubMed  CAS  Google Scholar 

  • Dicpinigaitis PV, Dobkin JB, Rauf K, Aldrich TK (1998) Inhibition of capsaicin-induced cough by the gamma-aminobutyric acid agonist baclofen. J Clin Pharmacol 38:364–367

    PubMed  CAS  Google Scholar 

  • Domino EF, Krutak-Krol H, Lal J (1985) Evidence for a central site of action for the antitussive effects of caramiphen. J Pharmacol Exp Ther 233:249–253

    PubMed  CAS  Google Scholar 

  • Fahy JV, Wong HH, Geppetti P, Reis JM, Harris SC, Maclean DB, Nadel JA, Boushey HA (1995) Effect of an NK1 receptor antagonist (CP-99,994) on hypertonic saline-induced bronchocon-striction and cough in male asthmatic subjects. Am J Respir Crit Care Med 152:879–884

    PubMed  CAS  Google Scholar 

  • Freestone C, Eccles R (1997) Assessment of the antitussive efficacy of codeine in cough associated with common cold. J Pharm Pharmacol 49:1045–1049

    PubMed  CAS  Google Scholar 

  • Fuller RW, Karlsson JA, Choudry NB, Pride NB (1988) Effect of inhaled and systemic opiates on responses to inhaled capsaicin in humans. J Appl Physiol 65:1125–1130

    PubMed  CAS  Google Scholar 

  • Gestreau C, Bianchi AL, Grelot L (1997) Differential brainstem Fos-like immunoreactivity after laryngeal-induced coughing and its reduction by codeine. J Neurosci 17:9340–9352

    PubMed  CAS  Google Scholar 

  • Girard V, Naline E, Vilain P, Emonds-Alt X, Advenier C (1995) Effect of the two tachykinin antagonists, SR 48968 and SR 140333, on cough induced by citric acid in the unanaesthetized guinea pig. Eur Respir J 8:1110–1114

    Article  PubMed  CAS  Google Scholar 

  • Gordon R, Gordon RJ, Sofia D (1976) Antitussive activity of some naturally occurring cannabinoids in anesthetized cats. Eur J Pharmacol 35:309–313

    Article  PubMed  CAS  Google Scholar 

  • Hay DW, Giardina GA, Griswold DE, Underwood DC, Kotzer CJ, Bush B, Potts W, Sandhu P, Lundberg D, Foley JJ, Schmidt DB, Martin LD, Kilian D, Legos JJ, Barone FC, Luttmann MA, Grugni M, Raveglia LF, Sarau HM (2002) Nonpeptide tachykinin receptor antagonists. III. SB 235375, a low central nervous system-penetrant, potent and selective neurokinin-3 receptor antagonist, inhibits citric acid-induced cough and airways hyper-reactivity in guinea pigs. J Pharmacol Exp Ther 300:314–323

    Article  PubMed  CAS  Google Scholar 

  • Hey JA, Mingo G, Bolser DC, Kreutner W, Krobatsch D, Chapman RW (1995) Respiratory effects of baclofen and 3-aminopropylphosphinic acid in guinea-pigs. Br J Pharmacol 114:735–738

    PubMed  CAS  Google Scholar 

  • Hutchings HA, Eccles R (1994) The opioid agonist codeine and antagonist naltrexone do not affect voluntary suppression of capsaicin induced cough in healthy subjects. Eur Respir J 7:715–719

    Article  PubMed  CAS  Google Scholar 

  • Hutchings HA, Morris S, Eccles R, Jawad MS (1993) Voluntary suppression of cough induced by inhalation of capsaicin in healthy volunteers. Respir Med 87:379–382

    Article  PubMed  CAS  Google Scholar 

  • Jakus J, Tomori Z, Stransky A, Boselova L (1987) Bulbar respiratory activity during defensive airways reflexes in cats. Acta Physiol Hung 70:245–254

    PubMed  CAS  Google Scholar 

  • Jakus J, Stransky A, Poliacek I, Barani H, Bosel'ova L (1998) Effects of medullary midline lesions on cough and other airway reflexes in anaesthetized cats. Physiol Res 47:203–213

    PubMed  CAS  Google Scholar 

  • Jakus J, Stransky A, Poliacek I, Barani H, Bosel'ova L (2000) Kainic acid lesions to the lateral tegmental field of medulla: Effects on cough, expiration and aspiration reflexes in anesthetized cats. Physiol Res 49:387–398

    PubMed  CAS  Google Scholar 

  • Jia Y, McLeod RL, Wang X, Parra LE, Egan RW, Hey JA (2002) Anandamide induces cough in conscious guinea-pigs through VR1 receptors. Br J Pharmacol 137:831–836

    Article  PubMed  CAS  Google Scholar 

  • Joad JP, Munch PA, Bric JM, Evans SJ, Pinkerton KE, Chen CY, Bonham AC (2004) Passive smoke effects on cough and airways in young guinea pigs: Role of brainstem substance P. Am J Respir Crit Care Med 169:499–504

    Article  PubMed  Google Scholar 

  • Kamei J (1996) Role of opioidergic and serotonergic mechanisms in cough and antitussives. Pulm Pharmacol 9:349–356

    Article  PubMed  CAS  Google Scholar 

  • Kamei J, Hosokawa T, Yanaura S, Hukuhara T (1986a) Effects of methysergide on the cough reflex. Jpn J Pharmacol 42:450–452

    Article  CAS  Google Scholar 

  • Kamei J, Hosokawa T, Yanaura S, Hukuhara T (1986b) Involvement of central serotonergic mechanisms in the cough reflex. Jpn J Pharmacol 42:531–538

    Article  CAS  Google Scholar 

  • Kamei J, Hukuhara T, Kasuya Y (1987a) Dopaminergic control of the cough reflex as demonstrated by the effects of apomorphine. Eur J Pharmacol 141:511–513

    Article  CAS  Google Scholar 

  • Kamei J, Ogawa M, Kasuya Y (1987b) Monoamines and the mechanisms of action of antitussive drugs in rats. Arch Int Pharmacodyn Ther 290:117–127

    CAS  Google Scholar 

  • Kamei J, Mori T, Ogawa M, Kasuya Y (1989) Subsensitivity to the cough-depressant effects of opioid and nonopioid antitussives in morphine-dependent rats: Relationship to central serotonin function. Pharmacol Biochem Behav 34:595–598

    Article  PubMed  CAS  Google Scholar 

  • Kamei J, Mori T, Kasuya Y (1990) Effects of L-tryptophan on the effects of antitussives. J Pharmacobiodyn 13:231–237

    PubMed  CAS  Google Scholar 

  • Kamei J, Mori T, Igarashi H, Kasuya Y (1991a) Effects of 8-hydroxy-2-(di-n-propylamino)tetralin, a selective agonist of 5-HT1A receptors, on the cough reflex in rats. Eur J Pharmacol 203: 253–258

    Article  CAS  Google Scholar 

  • Kamei J, Mori T, Kasuya Y (1991b) Effects of L-tryptophan on the development of tolerance to the antitussive effects of dihydrocodeine. Jpn J Pharmacol 55:403–406

    Article  CAS  Google Scholar 

  • Kamei J, Iwamoto Y, Kawashima N, Suzuki T, Nagase H, Misawa M, Kasuya Y (1993a) Possible involvement of mu 2-mediated mechanisms in mu-mediated antitussive activity in the mouse. Neurosci Lett 149:169–172

    Article  CAS  Google Scholar 

  • Kamei J, Iwamoto Y, Misawa M, Kasuya Y (1993b) Effects of rimcazole, a specific antagonist of sigma sites, on the antitussive effects of non-narcotic antitussive drugs. Eur J Pharmacol 242:209–211

    Article  CAS  Google Scholar 

  • Kamei J, Iwamoto Y, Misawa M, Nagase H, Kasuya Y (1993c) Antitussive effect of beta-endorphin is mediated by mu-opioid receptors, but not by kappa- or epsilon-opioid receptors. Eur J Pharmacol 233:251–254

    Article  CAS  Google Scholar 

  • Kamei J, Iwamoto Y, Suzuki T, Misawa M, Nagase H, Kasuya Y (1993d) Antitussive effects of naltrindole, a selective delta-opioid receptor antagonist, in mice and rats. Eur J Pharmacol 249:161–165

    Article  CAS  Google Scholar 

  • Kamei J, Iwamoto Y, Suzuki T, Misawa M, Nagase H, Kasuya Y (1993e) The role of the mu 2-opioid receptor in the antitussive effect of morphine in mu 1-opioid receptor-deficient CXBK mice. Eur J Pharmacol 240:99–101

    Article  CAS  Google Scholar 

  • Kamei J, Iwamoto Y, Suzuki T, Nagase H, Misawa M, Kasuya Y (1993f) Differential modulation of mu-opioid receptor-mediated antitussive activity by delta-opioid receptor agonists in mice. Eur J Pharmacol 234:117–120

    Article  CAS  Google Scholar 

  • Kamei J, Iwamoto Y, Misawa M, Nagase H, Kasuya Y (1994a) Antitussive effect of [Met5] enkephalin-Arg6-Phe7 in mice. Eur J Pharmacol 253:293–296

    Article  CAS  Google Scholar 

  • Kamei J, Iwamoto Y, Misawa M, Nagase H, Kasuya Y (1994b) Involvement of adenosine A1 receptors in antitussive effect in mice. Life Sci 55:PL383–388

    Article  CAS  Google Scholar 

  • Kamei J, Iwamoto Y, Suzuki T, Misawa M, Nagase H, Kasuya Y (1994c) Antitussive effect of dihydroetorphine in mice. Eur J Pharmacol 260:257–259

    Article  CAS  Google Scholar 

  • Kamei J, Iwamoto Y, Suzuki T, Misawa M, Nagase H, Kasuya Y (1994d) Involvement of delta 1-opioid receptor antagonism in the antitussive effect of delta-opioid receptor antagonists. Eur J Pharmacol 251:291–294

    Article  CAS  Google Scholar 

  • Kamei J, Saitoh A, Morita K, Nagase H (1995a) Antagonistic effect of buprenorphine on the an-titussive effect of morphine is mediated via the activation of mu 1-opioid receptors. Life Sci 57:PL231–235

    Article  CAS  Google Scholar 

  • Kamei J, Saitoh A, Suzuki T, Misawa M, Nagase H, Kasuya Y (1995b) Buprenorphine exerts its antinociceptive activity via mu 1-opioid receptors. Life Sci 56:PL285–290

    Article  CAS  Google Scholar 

  • Kamei J, Morita K, Ohsawa M, Onodera K (1999) Effects of epinastine on the antitussive and rewarding effects of dihydrocodeine in mice. Methods Find Exp Clin Pharmacol 21:663–668

    Article  PubMed  CAS  Google Scholar 

  • Kamei J, Morita K, Saitoh A, Nagase H (2003) The antitussive effects of endomorphin-1 and endomorphin-2 in mice. Eur J Pharmacol 467:219–222

    Article  PubMed  CAS  Google Scholar 

  • Kamei J, Yoshikawa Y, Saitoh A (2006) Effect of N-arachidonoyl-(2-methyl-4-hydroxyphenyl) amine (VDM11), an anandamide transporter inhibitor, on capsaicin-induced cough in mice. Cough 2:2

    Google Scholar 

  • Kamei J, Hayashi SS, Takahashi Y, Nozaki C (2007) Role of cyclin-dependent kinase 5 in capsaicin-induced cough. Eur J Pharmacol 566:181–184

    Article  PubMed  CAS  Google Scholar 

  • Korpas J, Tomori Z (1979) Cough and other respiratory reflexes. S. Karger, Basel, New York

    Google Scholar 

  • Kotzer CJ, Hay DW, Dondio G, Giardina G, Petrillo P, Underwood DC (2000) The antitussive activity of delta-opioid receptor stimulation in guinea pigs. J Pharmacol Exp Ther 292: 803–809

    PubMed  CAS  Google Scholar 

  • Kudlacz EM, Knippenberg RW, Logan DE, Burkholder TP (1996) Effect of MDL 105,212, a non-peptide NK-1/NK-2 receptor antagonist in an allergic guinea pig model. J Pharmacol Exp Ther 279:732–739

    PubMed  CAS  Google Scholar 

  • Lal J, Krutak-Krol H, Domino EF (1986) Comparative antitussive effects of dextrorphan, dex-tromethorphan and phencyclidine. Arzneimittelforschung 36:1075–1078

    PubMed  CAS  Google Scholar 

  • Lee MG, Undem BJ, Brown C, Carr MJ (2006) Effect of nociceptin in acid-evoked cough and airway sensory nerve activation in guinea pigs. Am J Respir Crit Care Med 173:271–275

    Article  PubMed  CAS  Google Scholar 

  • Li JQ, Jia YX, Yamaya M, Arai H, Ohrui T, Sekizawa K, Sasaki H (2002) Neurochemical regulation of cough response to capsaicin in guinea-pigs. Auton Autacoid Pharmacol 22:57–63

    Article  Google Scholar 

  • Lipski J, Bellingham MC, West MJ, Pilowsky P (1988) Limitations of the technique of pressure microinjection of excitatory amino acids for evoking responses from localized regions of the CNS. J Neurosci Meth 26:169–179

    Article  CAS  Google Scholar 

  • May AJ, Widdicombe JG (1954) Depression of the cough reflex by pentobarbitone and some opium derivatives. Br J Pharmacol Chemother 9:335–340

    PubMed  CAS  Google Scholar 

  • Mazzone SB, Mori N, Canning BJ (2005) Synergistic interactions between airway afferent nerve subtypes regulating the cough reflex in guinea-pigs. J Physiol 569:559–573

    Article  PubMed  CAS  Google Scholar 

  • McLeod RL, Parra LE, Mutter JC, Erickson CH, Carey GJ, Tulshian DB, Fawzi AB, Smith-Torhan A, Egan RW, Cuss FM, Hey JA (2001) Nociceptin inhibits cough in the guinea-pig by activation of ORL(1) receptors. Br J Pharmacol 132:1175–1178

    Article  PubMed  CAS  Google Scholar 

  • McLeod RL, Jia Y, Fernandez X, Parra LE, Wang X, Tulshian DB, Kiselgof EJ, Tan Z, Fawzi AB, Smith-Torhan A, Zhang H, Hey JA (2004) Antitussive profile of the NOP agonist Ro-64–6198 in the guinea pig. Pharmacology 71:143–149

    Article  PubMed  CAS  Google Scholar 

  • Merrill EG (1970) The lateral respiratory neurones of the medulla: Their associations with nucleus ambiguus, nucleus retroambigualis, the spinal accessory nucleus and the spinal cord. Brain Res 24:11–28

    Article  PubMed  CAS  Google Scholar 

  • Merrill EG (1972) Temporal patterns of antidromic invasion latencies for the respiratory neurones of nucleus retroambigualis in cats. J Physiol 223:18P–20P

    PubMed  CAS  Google Scholar 

  • Merrill EG (1974) Proceedings: Antidromic activation of lateral respiratory neurones during their silent periods. J Physiol 241:118P–119P

    PubMed  CAS  Google Scholar 

  • Morice AH, Menon MS, Mulrennan SA, Everett CF, Wright C, Jackson J, Thompson R (2007) Opiate therapy in chronic cough. Am J Respir Crit Care Med 175:312–315

    Article  PubMed  CAS  Google Scholar 

  • Morita K, Kamei J (2003) Antitussive effect of WIN 55212–2, a cannabinoid receptor agonist. Eur J Pharmacol 474:269–272

    Article  PubMed  CAS  Google Scholar 

  • Mutolo D, Bongianni F, Fontana GA, Pantaleo T (2007) The role of excitatory amino acids and substance P in the mediation of the cough reflex within the nucleus tractus solitarii of the rabbit. Brain Res Bull 74:284–293

    Article  PubMed  CAS  Google Scholar 

  • O'Connell F (2002) Central pathways for cough in man–unanswered questions. Pulm Pharmacol Ther 15:295–301

    Article  PubMed  CAS  Google Scholar 

  • Ohi Y, Yamazaki H, Takeda R, Haji A (2004) Phrenic and iliohypogastric nerve discharges during tussigenic stimulation in paralyzed and decerebrate guinea pigs and rats. Brain Res 1021: 119–127

    Article  PubMed  CAS  Google Scholar 

  • Ohi Y, Yamazaki H, Takeda R, Haji A (2005) Functional and morphological organization of the nucleus tractus solitarius in the fictive cough reflex of guinea pigs. Neurosci Res 53:201–209

    Article  PubMed  Google Scholar 

  • Ohi Y, Kato F, Haji A (2007) Codeine presynaptically inhibits the glutamatergic synaptic transmission in the nucleus tractus solitarius of the guinea pig. Neuroscience 146:1425–1433

    Article  PubMed  CAS  Google Scholar 

  • Patel HJ, Birrell MA, Crispino N, Hele DJ, Venkatesan P, Barnes PJ, Yacoub MH, Belvisi MG (2003) Inhibition of guinea-pig and human sensory nerve activity and the cough reflex in guinea-pigs by cannabinoid (CB2) receptor activation. Br J Pharmacol 140:261–268

    Article  PubMed  CAS  Google Scholar 

  • Penn RD (1992) Intrathecal baclofen for spasticity of spinal origin: Seven years of experience. J Neurosurg 77:236–240

    Article  PubMed  CAS  Google Scholar 

  • Poliacek I, Jakus J, Stransky A, Barani H, Halasova E, Tomori Z (2004) Cough, expiration and aspiration reflexes following kainic acid lesions to the pontine respiratory group in anesthetized cats. Physiol Res 53:155–163

    PubMed  CAS  Google Scholar 

  • Poliacek I, Corrie LW, Wang C, Rose MJ, Bolser DC (2007) Microinjection of DLH into the region of the caudal ventral respiratory column in the cat: Evidence for an endogenous cough-suppressant mechanism. J Appl Physiol 102:1014–1021

    Article  PubMed  CAS  Google Scholar 

  • Reynolds SM, Mackenzie AJ, Spina D, Page CP (2004) The pharmacology of cough. Trends Pharmacol Sci 25:569–576

    Article  PubMed  CAS  Google Scholar 

  • Rose MJ, Wang C, Golder FJ, Hammond JA, Bolser DC (2004) Influence of intrathecal and intra-arterial baclofen on laryngeal and tracheobronchial cough in the cat. FASEB J 18:A718

    Google Scholar 

  • Schomburg ED, Steffens H (1995) Influence of opioids and naloxone on rhythmic motor activity in spinal cats. Exp Brain Res 103:333–343

    Article  PubMed  CAS  Google Scholar 

  • Sekizawa S, Joad JP, Bonham AC (2003) Substance P presynaptically depresses the transmission of sensory input to bronchopulmonary neurons in the guinea pig nucleus tractus solitarii. J Physiol 552:547–559

    Article  PubMed  CAS  Google Scholar 

  • Shannon R, Baekey DM, Morris KF, Lindsey BG (1996) Brainstem respiratory networks and cough. Pulm Pharmacol 9:343–347

    Article  PubMed  CAS  Google Scholar 

  • Shannon R, Baekey DM, Morris KF, Lindsey BG (1998) Ventrolateral medullary respiratory network and a model of cough motor pattern generation. J Appl Physiol 84:2020–2035

    PubMed  CAS  Google Scholar 

  • Shannon R, Baekey DM, Morris KF, Li Z, Lindsey BG (2000) Functional connectivity among ven-trolateral medullary respiratory neurones and responses during fictive cough in the cat. J Physiol 525 Pt 1:207–224

    Google Scholar 

  • Smith J, Owen E, Earis J, Woodcock A (2006) Effect of codeine on objective measurement of cough in chronic obstructive pulmonary disease. J Allergy Clin Immunol 117:831–835

    Article  PubMed  CAS  Google Scholar 

  • Stone RA, Worsdell YM, Fuller RW, Barnes PJ (1993) Effects of 5-hydroxytryptamine and 5-hydroxytryptophan infusion on the human cough reflex. J Appl Physiol 74:396–401

    PubMed  CAS  Google Scholar 

  • Stone RA, Barnes PJ, Chung KF (1997) Effect of 5-HT1A receptor agonist, 8-OH-DPAT, on cough responses in the conscious guinea pig. Eur J Pharmacol 332:201–207

    Article  PubMed  CAS  Google Scholar 

  • Takahama K, Fukushima H, Isohama Y, Kai H, Miyata T (1997) Inhibition of glycine currents by dextromethorphan in neurones dissociated from the guinea-pig nucleus tractus solitarii. Br J Pharmacol 120:690–694

    Article  PubMed  CAS  Google Scholar 

  • Talbott MW, Barch GK, Gabel LP (1975) A new method for evaluating antitussives in cats using an electrode-cannula. Eur J Pharmacol 34:59–63

    Article  PubMed  CAS  Google Scholar 

  • Tatar M, Hanacek J, Widdicombe JG (2008) The expiration reflex from the trachea and bronchi. Eur Respir J 31:385–390

    Article  PubMed  CAS  Google Scholar 

  • Wang SC, Chou DT, Wallenstein MC (1977) Studies on the potency of various antitussive agents. Agents Actions 7:337–340

    Article  PubMed  CAS  Google Scholar 

  • Wood JD (1975) The role of gamma-aminobutyric acid in the mechanism of seizures. Prog Neurobiol 5:77–95

    Article  PubMed  CAS  Google Scholar 

  • Xie R, Hammarlund-Udenaes M (1998) Blood–brain barrier equilibration of codeine in rats studied with microdialysis. Pharm Res 15:570–575

    Article  PubMed  CAS  Google Scholar 

  • Xu F, Frazier DT, Zhang Z, Baekey DM, Shannon R (1997) Cerebellar modulation of cough motor pattern in cats. J Appl Physiol 83:391–397

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bolser, D.C. (2009). Central Mechanisms II: Pharmacology of Brainstem Pathways. In: Chung, K.F., Widdicombe, J. (eds) Pharmacology and Therapeutics of Cough. Handbook of Experimental Pharmacology, vol 187. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79842-2_10

Download citation

Publish with us

Policies and ethics