Skip to main content

Glacier Mapping and Monitoring Using Multispectral Data

  • Chapter
  • First Online:
Global Land Ice Measurements from Space

Abstract

Multispectral satellite data represent the primary data source for spaceborne glacier mapping and monitoring, and remote-sensing studies have generated significant results regarding global glacier observations and understandings. In this chapter we provide an overview of the use of multispectral data and the methods typically applied in glacier studies. Besides multispectral techniques based on the visible and near-infrared section and the shortwave infrared section of the spectrum, we also briefly discuss methods for analyzing thermal and radar data, with special emphasis on the mapping of debris-covered glacier ice. A further focus is on spectral change detection techniques applied to multitemporal data, with special attention to a novel image-differencing technique. Then we provide an overview of satellite image-based measurement of glacier flow. Finally, we offer a suggestion for a new combination of glacier observations to be made by both multispectral and radar/microwave remote-sensing sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adhikary, S., Nakawo, M., Seko, K., and Shakya, B. (2000) Role of supraglacial ponds in the ablation process of a debris-covered glacier in the Nepal Himalayas. In: Nakawo, M., Raymond, C., and Fountain, A. (Eds.), Debris-covered Glaciers, International Association of Hydrological Sciences, Rennes, France, pp. 43–52.

    Google Scholar 

  • Ahn, Y., and Howat, I. (2011) Efficient automated glacier surface velocity measurement from repeat images using multi-image/multichip and null exclusion feature tracking. IEEE Transactions on Geoscience and Remote Sensing, 49(8), 2838–2846.

    Google Scholar 

  • Albert, T.H. (2002) Evaluation of remote sensing techniques for ice-area classification applied to the tropical Quelccaya Ice Cap, Peru. Polar Geography, 26(3), 210–226.

    Google Scholar 

  • Andreassen, L., Paul, F., Kääb, A., and Hausberg, J. (2008) Landsat-derived glacier inventory for Jotunheimen, Norway, and deduced glacier since the 1930s. The Cryosphere, 2, 131–145.

    Google Scholar 

  • Aniya, M., Sato, H., Naruse, R., Skvarca, P., and Casassa, G. (1996) The use of satellite and airborne imagery to inventory outlet glaciers of the Southern Patagonia Icefield, South America. Photogrammetric Engineering & Remote Sensing, 62, 1361–1369.

    Google Scholar 

  • Atwood, D., Meyer, F., and Arendt, A. (2010) Using Lband SAR coherence to delineate glacier extent. Canadian Journal of Remote Sensing, 36, S186–S195.

    Google Scholar 

  • Bamler, R. and Hartl, P. (1998) Synthetic aperture radar interferometry. Inverse Problems, 14, R1–R54.

    Google Scholar 

  • Bhambri, R., Bolch, T., Chaujar, R.K., and Kulshreshtha, S.C. (2011) Glacier changes in the Garhwal Himalaya, India, from 1968 to 2006 based on remote sensing. Journal of Glaciology, 57(203), 543–556.

    Google Scholar 

  • Binaghi, E., Madella, A., Madella, P., and Rampini, A. (1993) Integration of remote sensing images in a GIS for the study of alpine glaciers. In: Winkler, P. (Ed.), Remote Sensing for Monitoring the Changing Environment of Europe, Balkema, Rotterdam, The Netherlands, pp. 173–178.

    Google Scholar 

  • Binaghi, E., Madella, P., Montesano, M., and Rampini, A. (1997) Fuzzy contextual classification of multisource remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 35(2), 326–339.

    Google Scholar 

  • Bishop, M., Shroder, J., and Hickman, B. (1999) High resolution satellite imagery and neuronal networks for information extraction in a complex mountain environment. Geocarto International, 14, 17–26.

    Google Scholar 

  • Bishop, M.P., Bonk, R., Kamp, U., and Shroder, J. (2001) Terrain analysis and data modeling for alpine glacier mapping. Polar Geography, 25(3), 182–201.

    Google Scholar 

  • Bishop, M., Olsenholler, J., Shroder, J., Barry, R., Raup, B., Bush, A., Copland, L., Dwyer, J., Fountain, A., Haeberli, W. et al. (2004). Global Land Ice Measurements from Space (GLIMS): Remote sensing and GIS investigations of the Earth’s cryosphere. Geocarto International, 19(2).

    Google Scholar 

  • Bolch, T., and Kamp, U. (2006) Glacier mapping in high mountains using DEMs, Landsat and ASTER data. Grazer Scriften der Geographie und Raumforschung, 41, 37–48.

    Google Scholar 

  • Bolch, T., Buchroithner, M., Kunert, A., and Kamp, U. (2007) Landsat-based inventory of glaciers in western Canada, 1985–2005. EARSeL eProceedings, 27, 403–410.

    Google Scholar 

  • Bolch, T., Buchroithner, M.F., Peters, J., Baessler, M., and Bajracharya, S. (2008) Identification of glacier motion and potentially dangerous glacial lakes in the Mt. Everest region/Nepal using spaceborne imagery. Natural Hazards and Earth System Science, 8(6), 1329–1340.

    Google Scholar 

  • Bolch, T., Menounos, B., and Wheate, R. (2010a) Landsat-based inventory of glaciers in western Canada, 1985–2005. Remote Sensing of Environment, 114(2010), 127–137.

    Google Scholar 

  • Bolch, T., Yao, T., Kang, S., Buchroithner, M., Scherer, D., Maussion, F., Huintjes, E., and Schneider, C. (2010b) A glacier inventory for the western Nyainqentanglha Range and the Nam Co Basin, Tibet, and glacier changes 1976–2009. The Cryosphere, 4(3), 419–433.

    Google Scholar 

  • Bolch, T., Pieczonka1, T., and Benn, D. (2011) Multidecadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. The Cryosphere, 5(2), 349–358.

    Google Scholar 

  • Bourdelles, B. and Fily, M. (1993). Snow grain size determination from Landsat imagery. Annals of Glaciology, 17, 87–92.

    Google Scholar 

  • Bronge, L., and Bronge, C. (1999) Ice and snow-type classification in the Vestfold Hills, East Antarctica, using Landsat-TM data and ground radiometer measurements. International Journal of Remote Sensing, 20, 225–240.

    Google Scholar 

  • Brown, D., Lusch, D., and Duda, K. (1998) Supervised classification of types of glaciated landscapes using digital elevation data. Geomorphology, 21, 233–250.

    Google Scholar 

  • Casey, K., Kääb, A., and Benn, D. (2012) Geochemical characterization of supraglacial debris via in situ and optical remote sensing methods: A case study in Khumbu Himalaya, Nepal. The Cryosphere, 6, 85–100.

    Google Scholar 

  • Clark, R. (1999) Spectroscopy of rocks and minerals, and principles of spectroscopy. In A. Rencz (Ed.), Remote Sensing for the Earth Sciences: Manual of Remote Sensing, Third Edition, John Wiley & Sons, New York, 358 pp.

    Google Scholar 

  • Cogley, J., Hock, R., Rasmussen, L., Arendt, A., Bauder, A., Braithwaite, R., Jansson, P., Kaser, G., Möller, M., Nicholson, L. et al. (2011) Glossary of Glacier Mass Balance and Related Terms (Technical Report 86, IHPVII Technical Documents in Hydrology, IACS Contribution No. 2), UNESCO–IHP.

    Google Scholar 

  • Copland, L., Pope, S., Bishop, M., Shroder, J., Clendon, P., Bush, A., Kamp, U., Seong, Y., and Owen, L. (2009) Glacier velocities across the central Karakoram. Annals of Glaciology, 50(52), 41–49.

    Google Scholar 

  • Crippen, R. (1988) The dangers of underestimating the importance of data adjustments in band ratioing. International Journal of Remote Sensing, 9(4), 767–776.

    Google Scholar 

  • Crippen, R.E. (1989) A simple spatial filtering routine for the cosmetic removal of scan-line noise from Landsat TM p-tape imagery. Photogrammetric Engineering and Remote Sensing, 55(3), 327–331.

    Google Scholar 

  • Debella-Gilo, M., and Kääb, A. (2011) Sub-pixel precision image matching for measuring surface displacements on mass movements using normalized crosscorrelation. Remote Sensing of Environment, 115(1), 130–142.

    Google Scholar 

  • Debella-Gilo, M., and Kääb, A. (2012) Measurement of surface displacement and deformation of mass movements using least squares matching of repeat high resolution satellite and aerial images. Remote Sensing, 4(1), 43–67.

    Google Scholar 

  • Della Ventura, A., Rampini, A., Rabagliati, R., and Serandrei Barbero, R. (1983) Glacier monitoring by satellite. Il Nuovo Cimento, C-1(6), 211–221.

    Google Scholar 

  • Dowdeswell, J., and Benham, T. (2003) A surge of Perseibreen, Svalbard, examined using aerial photography and ASTER high-resolution satellite imagery. Polar Research, 22(2), 373–383.

    Google Scholar 

  • Dozier, J. (1989). Spectral signature of alpine snow cover from the Landsat Thematic Mapper. Remote Sensing of Environment, 28, 9–22.

    Google Scholar 

  • Engeset, R., and Ødegard, R.S. (1999) Comparison of annual changes in winter ERS-1 SAR images and glacier mass balance of Slakbreen, Svalbard. International Journal of Remote Sensing, 20(2), 259–271.

    Google Scholar 

  • Evans, A.N. (2000) Glacier surface motion computation from digital image sequences. IEEE Transactions on Geoscience and Remote Sensing, 38(2), 1064–1072.

    Google Scholar 

  • Förstner, W. (2000) Image preprocessing for feature extraction in digital intensity, color and range images. In: A. Dermanis, A. Gruen, and F. Sans (Eds.), Geomatic Methods for the Analysis of Data in the Earth Sciences (Lecture Notes in Earth Sciences), Springer-Verlag, Berlin, pp. 165–189.

    Google Scholar 

  • Frezzotti, M., Capra, A., and Vittuari, L. (1998) Comparison between glacier ice velocities inferred from GPS and sequential satellite images. Annals of Glaciology, 27, 54–60.

    Google Scholar 

  • Fujii, Y. (1977) Field experiment on glacier ablation under a layer of debris cover. Journal of the Japanese Society of Snow and Ice, 39, 20–21.

    Google Scholar 

  • Fujimura, S., and Kiyasu, S. (1999) Comparison between glacier ice velocities inferred from GPS and sequential satellite images. Paper presented at IEEE Geoscience and Remote Sensing Symposium, IGARS-99, pp. 1192–1194.

    Google Scholar 

  • Gillespie, A., Kahle, A., and Walker, R. (1986) Color enhancement of highly correlated images, I: Decorrelation and HSI contrast stretches. Remote Sensing of Environment, 20, 209–235.

    Google Scholar 

  • Gratton, D., Howarth, P., and Marceau, D. (1990) Combining DEM parameters with Landsat MSS and TM imagery in a GIS for mountain glacier characterization. IEEE Transactions on Geoscience and Remote Sensing, 28(4), 766–769.

    Google Scholar 

  • Gratton, D., Howarth, P., and Marceau, D. (1993) Using Landsat-5 Thematic Mapper and digital elevation data to determine the net radiation field of a mountain glacier. Remote Sensing of Environment, 43, 315–331.

    Google Scholar 

  • Gruber, S., Schläpfer, D., and Hoelzle, M. (2003) Snowfree ground albedo derived from DAIS 7915 hyper-spectral imagery for energy balance modeling in highalpine topography. Paper presented at Eighth International Conference on Permafrost, Extended Abstracts, pp. 47–48.

    Google Scholar 

  • Gruen, A., and Baltsavias, E. (1987) High-precision image matching for digital terrain modelling. Photogrammetria, 42, 97–112.

    Google Scholar 

  • Gudmundsson, G., and Bauder, A. (1999) Towards an indirect determination of the mass-balance distribution of glaciers using the kinematic boundary condition. Geografiska Annaler, 81A(4), 575–583.

    Google Scholar 

  • Haeberli, W., and Epifani, F. (1986) Mapping the distribution of buried glacier ice: An example from Lago Delle Locce, Monte Rosa, Italian Alps. Annals of Glaciology, 8, 78–81.

    Google Scholar 

  • Hall, D., Chang, A., and Siddalingaiah, H. (1988) Reflectances of glaciers as calculated using Landsat 5 Thematic Mapper data. Remote Sensing of Environment, 25(3), 311–321.

    Google Scholar 

  • Hall, D., Chang, A., Foster, J., Benson, C., and Kovalick, W. (1989) Comparison of in situ and Landsat derived reflectances of Alaskan glaciers. Remote Sensing of Environment, 28, 23–31.

    Google Scholar 

  • Hall, D., Bindschadler, R., Foster, J., Chang, A., and Siddalingaiah, H. (1990) Comparison of in situ and satellite derived reflectances of Forbindels Glacier, Greenland. International Journal of Remote Sensing, 11, 493–504.

    Google Scholar 

  • Hall, D., Williams, R., and Bayr, K. (1992) Glacier recession in Iceland and Austria. EOS Trans. Am. Geophys. Union, 73(12), 129, 135, 141.

    Google Scholar 

  • Hall, D., Williams, R., and Sigurdsson, O. (1995a) Glaciological observations on Bruarjökull, Iceland, using synthetic aperture radar and Thematic Mapper satellite data. Annals of Glaciology, 21, 271–276.

    Google Scholar 

  • Hall, D.K., Riggs, G., and Salomonson, V. (1995b) Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sensing of Environment, 54(2), 127–140.

    Google Scholar 

  • Hall, D., Williams, R., Casey, K., DiGirolamo, N., and Wan, Z. (2006) Satellite-derived, melt-season surface temperature of the Greenland ice sheet (2000–2005) and its relationship to mass balance. Geophysical Research Letters, 33(11).

    Google Scholar 

  • Hall, D., Nghiem, S., Schaaf, C., DiGirolamo, N., and Neumann, G. (2009) Evaluation of surface and nearsurface melt characteristics on the Greenland ice sheet using MODIS and QuikSCAT data. Journal of Geophysical Research—Earth Surface, 114.

    Google Scholar 

  • Haug, T., Kääb, A., and Skvarca, P. (2010) Monitoring ice shelf velocities from repeat MODIS and Landsat data: A method study on the Larsen C ice shelf, Antarctic Peninsula, and 10 other ice shelves around Antarctica. The Cryosphere, 4(2):161–178.

    Google Scholar 

  • Heid, T., and Kääb, A. (2012) Evaluation of existing image matching methods for deriving glacier surface displacements globally from optical satellite imagery. Remote Sensing of Environment, 118, 339–355.

    Google Scholar 

  • Hoelzle, M., Mittaz, C., Etzelmöller, B., and Haeberli, W. (2001) Surface energy fluxes and distribution models of permafrost in European mountain areas: An overview of current developments. Permafrost and Periglacial Processes, 12(1), 53–68.

    Google Scholar 

  • Holben, B., and Justice, C. (1981) An examination of spectral band rationing to reduce the topographic effect on remotely sensed data. International Journal of Remote Sensing, 2, 115–133.

    Google Scholar 

  • Huggel, C., Kääb, A., Haeberli, W., Teysseire, P., and Paul, F. (2002) Satellite and aerial imagery for analysing high mountain lake hazards. Canadian Geotechnical Journal, 39(2), 316–330.

    Google Scholar 

  • Hugli, H., and Frei, W. (1983) Understanding anisotropic reflectance in mountainous terrain. Photogrammetric Engineering & Remote Sensing, 49(5), 671–683.

    Google Scholar 

  • Ingram, K., Knapp, E., and Robinson, J. (1981) Change Detection Technique Development for Improved Urbanized Area Delineation (Technical Report Technical memorandum CSCITM- 81/6087), Computer Sciences Corporation, Falls Church, VA.

    Google Scholar 

  • Jensen, J. (1983) Urban/suburban Land Use Analysis: Manual of Remote Sensing 2, American Society of Photogrammetry, Falls Church, VA.

    Google Scholar 

  • Jensen, J. (2005) Introductory Digital Image Processing: A Remote Sensing Perspective, Second Edition, Pearson Prentice Hall, Upper Saddle River, NJ.

    Google Scholar 

  • Kääb, A. (2001) Photogrammetric reconstruction of glacier mass balance using a kinematic iceflow model: A 20-year time-series on Grubengletscher, Swiss Alps. Annals of Glaciology, 31, 45–52.

    Google Scholar 

  • Kääb, A. (2002) Monitoring high-mountain terrain deformation from repeated air- and spaceborne optical data: Examples using digital aerial imagery and ASTER data. Photogrammetry and Remote Sensing, 57, 39–52.

    Google Scholar 

  • Kääb, A. (2005a) Combination of SRTM3 and repeat ASTER data for deriving alpine glacier flow velocities in the Bhutan Himalaya. Remote Sensing of Environment, 94(1), 463–474.

    Google Scholar 

  • Kääb, A. (2005b) Remote Sensing of Mountain Glaciers and Permafrost Creep, Vol. 48, Schriftenreihe Physische Geographie, Glaziologie und Geomorphodynamik, University of Zürich, Zürich.

    Google Scholar 

  • Kääb, A. and Funk, M. (1999) Modelling mass balance using photogrammetric and geophysical data: A pilot study at Griesgletscher, Swiss Alps. Journal of Glaciology, 45(151), 575–583.

    Google Scholar 

  • Kääb, A. and Vollmer, M. (2000) Surface geometry, thickness changes and flow fields on creeping mountain permafrost: Automatic extraction by digital image analysis. Permafrost and Periglacial Processes, 11(4), 315–326.

    Google Scholar 

  • Kääb, A., Haeberli, W., and Gudmundsson, G. (1997) Analysing the creep of mountain permafrost using high precision aerial photogrammetry: 25 years of monitoring Gruben rock glacier, Swiss Alps. Permafrost and Periglacial Processes, 8(4), 409–426.

    Google Scholar 

  • Kääb, A., Gudmundsson, G., and Hoelzle, M. (1998) Surface deformation of creeping mountain permafrost: Photogrammetric investigations on rock glacier Murtel. Paper presented at Proceedings of the Seventh International Permafrost Conference, Yellowknife, Canada, pp. 531–537.

    Google Scholar 

  • Kääb, A., Paul, F., Maisch, M., Hoelzle, M., and Haeberli, W. (2002) The new remote-sensing-derived Swiss glacier inventory, II: First results. Annals of Glaciology, 34, 362–366.

    Google Scholar 

  • Kääb, A., Huggel, C., Paul, F., Wessels, R., Raup, B., Kieffer, H., and Kargel, J. (2003a) Glacier monitoring from ASTER imagery: Accuracy and applications. EARSeL eProceedings (LISSIG Workshop, Berne, March 11–13, 2002), 2(1), 43–53.

    Google Scholar 

  • Kääb, A., Isakowski, Y., Paul, F., Neumann, A., and Winter, R. (2003b) Glaziale und periglaziale Prozesse: Von der statischen zur dynamischen Visualisierung. Kartographische Nachrichten, 535), 206–212.

    Google Scholar 

  • Kääb, A., Lefauconnier, B., and Melvold, K. (2006) Flow field of Kronebreen, Svalbard, using repeated Landsat7 and ASTER data. Annals of Glaciology, 42, 7–13.

    Google Scholar 

  • Kääb, A., Berthier, E., Nuth, C., Gardelle, J., and Arnaud, Y. (2012) Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature, 488, 495–498.

    Google Scholar 

  • Kargel, J.S., Ahlstrøm, A.P., Alley, R.B., Bamber, J.L., Benham, T.J., Box, J.E., Chen, C., Christoffersen, P., Citterio, M., Cogley, J.G. et al. (2012) Greenland’s shrinking ice cover: ‘‘Fast times’’ but not that fast (Brief communication). The Cryosphere, 6(3), 533–537.

    Google Scholar 

  • Kaufmann, V., and Ladstädter, R. (2002) Spatiotemporal analysis of the dynamic behaviour of the Hochebenkar rock glaciers (Oetztal Alps, Austria) by means of digital photogrammetric methods. Grazer Schriften der Geographie und Raumforschung, 37, 119–140.

    Google Scholar 

  • Kayastha, R., Takeuchi, Y., Nakawo, M., and Ageta, Y. (2000) Role of supraglacial ponds in the ablation process of a debris-covered glacier in the Nepal Himalayas. In: M. Nakawo, C. Raymond, and A. Fountain (Eds.), Debris-covered Glaciers, International Association of Hydrological Sciences, Rennes, France, pp. 71–81.

    Google Scholar 

  • Keller, P., Keller, I., and Itten, K. (1998) Combined hyperspectral data analysis of two Alpine lakes using CASI and DAIS 7915 imagery. Paper presented at EARSeL Workshop, University of Zurich, Zurich, Switzerland.

    Google Scholar 

  • Kelley, R., Engeset, R., Kennett, M., Barrett, E., and Theakstone, W. (1997) Characteristic snow and ice properties of a Norwegian ice cap determined from complex ERS SAR. Paper presented at Proceedings of the Third ERS Symposium, ESA, Noordwijk, The Netherlands.

    Google Scholar 

  • Klein, A.G., Seltzer, G.O., and Isacks, B.L. (1999) Modern and last local glacial maximum snowlines in the Central Andes of Peru, Bolivia, and Northern Chile. Quaternary Science Reviews, 18, 63–84.

    Google Scholar 

  • Knap, W., Brock, B., Oerlemans, J., and Willis, I. (1999) Comparison of Landsat-TM derived and groundbased albedos of Haut Glacier d’Arolla, Switzerland. International Journal of Remote Sensing, 20(17), 3293–3310.

    Google Scholar 

  • Koelemeijer, R., Oerlemanns, J., and Tjemkes, S. (1993) Surface reflectance of Hintereisferner, Austria, from Landsat 5 TM imagery. Annals of Glaciology, 17, 17–22.

    Google Scholar 

  • König, M., Winther, J.-G., and Isaksson, E. (2001) Measuring snow and ice properties from satellite. Reviews of Geophysics, 39(1), 1–27.

    Google Scholar 

  • Kwok, R., and Fahnestock, M. (1996) Ice sheet motion and topography from radar interferometry. IEEE Transactions on Geoscience and Remote Sensing, 34(1), 189–200.

    Google Scholar 

  • Lefauconnier, B., Hagen, J., and Rudant, J. (1994) Flow speed and calving rate of Kronebreen Glacier, Svalbard, using SPOT images. Polar Research, 13(1), 59–65.

    Google Scholar 

  • Leprince, S., Ayoub, F., Klinger, Y., and Avouac, J. (2007) Co-registration of optically sensed images and correlation (COSI-Corr): An operational methodology for ground deformation measurements. Paper presented at IEEE Geoscience and Remote Sensing Symposium, IGARS-2007, 1943–1946.

    Google Scholar 

  • Liang, J. (2004) Quantitative Remote Sensing of Land Surfaces, John Wiley & Sons, New York.

    Google Scholar 

  • Lillesand, T., and Kieffer, R. (2000) Remote Sensing and Image Interpretation, Fourth Edition, John Wiley & Sons, New York.

    Google Scholar 

  • Luckman, A., Quincey, D., and Bevan, S. (2007) The potential of satellite radar interferometry and feature tracking for monitoring flow rates of Himalayan glaciers. Remote Sensing of Environment, 111(23), 172–181.

    Google Scholar 

  • Markham, B., and Barker, J. (1985) Spectral characterization of the Landsat Thematic Mapper sensors. International Journal of Remote Sensing, 6(5), 697–716.

    Google Scholar 

  • Marshall, G., Rees, W., and Dowdeswell, J. (1995) The discrimination of glacier facies using multitemporal ERS-1 SAR data. In: J. Askne (Ed.), Sensors and Environmental Applications of Remote Sensing, Balkema, Rotterdam, The Netherlands, pp. 263–269.

    Google Scholar 

  • Mattson, L., Gardner, J., and Young, G. (1993) Ablation on debris covered glaciers: An example from the Rakhiot Glacier, Punjab, Himalaya. Snow and Glacier Hydrology, IAHS, 218, 289–296.

    Google Scholar 

  • Mihalcea, C., Mayer, C., Diolaiuti, G., D’Agata, C., Smiraglia, C., Lambrecht, A., Vuillermoz, E., and Tartari, G. (2008) Spatial distribution of debris thickness References 109 and melting from remote-sensing and meteorological data, at debris-covered Baltoro Glacier, Karakoram, Pakistan. Annals of Glaciology, 48, 49–57.

    Google Scholar 

  • Mittaz, C., Hoelzle, M., and Haeberli, W. (2000) First results and interpretation of energy-flux measurements of Alpine permafrost. Annals of Glaciology, 31, 275–280.

    Google Scholar 

  • Moholdt, G., and Kääb, A. (2012) A new DEM of the Austfonna Ice Cap by combining differential SAR interferometry with ICESat laser altimetry. Polar Research, 31(18460).

    Google Scholar 

  • Mouat, D., Mahin, G., and Lancaster, J. (1993) Remote sensing techniques in the analysis of change detection. Geocarto International, 2, 39–50.

    Google Scholar 

  • Nagler, T. and Rott, H. (2000) Retrieval of wet snow by means of multitemporal SAR data. IEEE Transactions on Geoscience and Remote Sensing, 38(2), 754–765.

    Google Scholar 

  • Nakawo, M. and Young, G. (1982) Estimate of glacier ablation under a debris layer from surface-temperature and meteorological variables. Journal of Glaciology, 28(98), 29–34.

    Google Scholar 

  • Nakawo, M., Yabuki, H., and Sakai, A. (1999) Characteristics of Khumbu Glacier, Nepal Himalaya: Recent change in the debris-covered area. Annals of Glaciology, 28, 118–122.

    Google Scholar 

  • Narama, C., Kääb, A., Duishonakunov, M., and Abdrakhmatov, K. (2010) Spatial variability of recent glacier area changes in the Tien Shan mountains, Central Asia, using Corona (_1970), Landsat (_2000), and ALOS (_2007) satellite data. Global and Planetary Change, 71(12), 42–54.

    Google Scholar 

  • Nicholson, L., and Benn, D. (2006) Calculating ice melt beneath a debris layer using meteorological data. Journal of Glaciology, 52(178), 463–470.

    Google Scholar 

  • Nuth, C., and Kääb, A. (2011) Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. The Cryosphere, 5(1), 271–290.

    Google Scholar 

  • Østrem, G. (1959) Ice melting under a thin layer of moraine, and the existence of ice cores in moraine ridges. Geografiska Annaler, 41(4), 228–230.

    Google Scholar 

  • Painter, T. (2011) Comment on Singh et al., ‘‘Hyperspectral analysis of snow reflectance to understand the effects of contamination and grain size.’’ Journal of Glaciology, 57(201), 183–185.

    Google Scholar 

  • Painter, T., Duval, B., Thomas, W., Mendez, M., Heintzelman, S., and Dozier, J. (2001) Detection and quantification of snow algae with an airborne imaging spectrometer. Applied and Environmental Microbiology, 67(11), 5267–5272.

    Google Scholar 

  • Painter, T.H., Dozier, J., Roberts, D.A., Davis, R.E., and Green, R.O. (2003) Retrieval of subpixel snow-covered area and grain size from imaging spectrometer data. Remote Sensing of Environment, 85(1), 64–77.

    Google Scholar 

  • Paul, F. (2001) Evaluation of different methods for glacier mapping using Landsat TM. EARSeL eProceedings, 1, 239–245.

    Google Scholar 

  • Paul, F. (2002) Changes in glacier area in Tyrol, Austria, between 1969 and 1992 derived from Landsat 5 Thematic Mapper and Austrian glacier inventory data. International Journal of Remote Sensing, 23(4), 787–799.

    Google Scholar 

  • Paul, F. (2004) The new Swiss glacier inventory 2000: Application of remote sensing and GIS. PhD thesis, University of Zurich.

    Google Scholar 

  • Paul, F., and Kääb, A. (2005) Perspectives on the production of a glacier inventory from multispectral satellite data in the Canadian Arctic: Cumberland Peninsula, Baffin Island. Annals of Glaciology, 42, 59–66.

    Google Scholar 

  • Paul, F., Kääb, A., Maisch, M., Kellenberger, T., and Haeberli, W. (2002) The new remote-sensing-derived Swiss glacier inventory, I: Methods. Annals of Glaciology, 34, 355–361.

    Google Scholar 

  • Paul, F., Huggel, C., and Kääb, A. (2004) Mapping of debris-covered glaciers using multispectral and DEM classification techniques. Remote Sensing of Environment, 89, 510–518.

    Google Scholar 

  • Paul, F., Kääb, A., and Haeberli, W. (2007) Recent glacier changes in the Alps observed by satellite: Consequences for future monitoring strategies. Global and Planetary Change, 56, 111–122, doi: 10.1016/j. gloplacha.2006.07.007.

    Google Scholar 

  • Paul, F., Barry, R., Cogley, J., Frey, H., Haeberli, W., Ohmura, A., Ommanney, C., Raup, B., Rivera, A., and Zemp, M. (2009) Recommendations for the compilation of glacier inventory data from digital sources. Annals of Glaciology, 50(53), 119–126.

    Google Scholar 

  • Pietroniro, A., and Leconte, R. (2000) A review of Canadian remote sensing applications in hydrology, 1995–1999. Hydrological Processes, 14, 1641–1666.

    Google Scholar 

  • Quincey, D. and Glasser, N. (2009) Morphological and ice-dynamical changes on the Tasman Glacier, New Zealand, 1990–2007. Global and Planetary Change, 68(3), 185–197.

    Google Scholar 

  • Quincey, D., Copland, L., Mayer, C., Bishop, M., Luckman, A., and Belo, M. (2009a) Ice velocity and climate variations for Baltoro Glacier, Pakistan. Journal of Glaciology, 55(194), 1061–1071.

    Google Scholar 

  • Quincey, D., Luckman, A., and Benn, D. (2009b) Quantification of Everest region glacier velocities between 1992 and 2002, using satellite radar interferometry and feature tracking. Journal of Glaciology, 55(192), 596–606.

    Google Scholar 

  • Qunzhu, Z., Meisheng, C., Xuezhi, F., Fengxian, L., Xianzhang, C., and Wenkun, S. (1983) A study of spectral reflection characteristics for snow, ice and water in the north of China. In: B. Goodison (Ed.), Hydrological Applications of Remote Sensing and Remote Data Transmission, International Association of Hydrological Sciences, Rennes, France, pp. 451–462.

    Google Scholar 

  • Rana, B., Nakawo, M., Fukushima, Y., and Ageta, Y. (1997) Application of a conceptual precipitation-runoff model (HYCYMODEL) in a debris-covered glacier-ized basin in the Langtang Valley, Nepal Himalaya. Annals of Glaciology, 25, 226–231.

    Google Scholar 

  • Richards, J.A. (1993) Remote Sensing Digital Image Analysis, Second Edition, Springer-Verlag, Berlin.

    Google Scholar 

  • Rolstad, C., Amlien, J., Hagen, J., and Lunde´n, B. (1997) Visible and near-infrared digital images for determination of ice velocities and surface elevation during a surge on Osbornebreen, a tidewater glacier in Svalbard. Annals of Glaciology, 24, 255–261.

    Google Scholar 

  • Rott, H. (1976) Analyse der Schneeflocken auf Gletschern der Tiroler Zentralalpen aus Landsat-Bildern. Zeitschrift für Gletscherkunde und Glazialgeologie, 12(1), 1–18.

    Google Scholar 

  • Rott, H. (1994) Thematic studies in Alpine areas by means of polarimetric SAR and optical imagery. Advances in Space Research, 14(3), 217–226.

    Google Scholar 

  • Rott, H., and Markl, G. (1989) Improved snow and glacier monitoring by the Landsat Thematic Mapper. Workshop on Landsat Themaic Mapper Applications (Technical Report SP-1102), ESA, Noordwijk, The Netherlands.

    Google Scholar 

  • Rott, H., and Strobl, D. (1992) Synergism of SAR and Landsat TM imagery for thematic mapping in complex terrain. Advances in Space Research, 12(7), 425–431.

    Google Scholar 

  • Rowan, L., and Mars, J. (2003) Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Remote Sensing of Environment, 84(3), 350–366.

    Google Scholar 

  • Sabins, F. (1999) Remote sensing for mineral exploration. Ore Geology Reviews, 14(34), 157–183.

    Google Scholar 

  • Sakai, A., Takeuchi, N., Fujita, K., and Nakawo, M. (2000) Role of supraglacial ponds in the ablation process of a debris-covered glacier in the Nepal Himalayas. In: M. Nakawo, C. Raymond, and A. Fountain (Eds.), Debris-covered Glaciers, International Association of Hydrological Sciences, Rennes, France, pp. 119–130.

    Google Scholar 

  • Sandmeier, S., and Itten, K. (1997) A physically-based model to correct atmospheric and illumination effects in optical satellite data of rugged terrain. IEEE Transactions on Geoscience and Remote Sensing, 35(3), 708–717.

    Google Scholar 

  • Scambos, T.A., Dutkiewicz, M.J., Wilson, J.C., and Bindschadler, R.A. (1992) Application of image cross-correlation to the measurement of glacier velocity using satellite image data. Remote Sensing of the Environment, 42(3), 177–186.

    Google Scholar 

  • Scherler, D., Leprince, S., and Strecker, M.R. (2008) Glacier-surface velocities in alpine terrain from optical satellite imagery: Accuracy improvement and quality assessment. Remote Sensing of Environment, 112(10), 3806–3819.

    Google Scholar 

  • Scherler, D., Bookhagen, B., and Strecker, M.R. (2011) Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nature Geoscience, 4, 156–159.

    Google Scholar 

  • Schiefer, E., Menounos, B., and Wheate, R. (2008) An inventory and morphometric analysis of British Columbia glaciers, Canada. Journal of Glaciology, 54(186), 551–560.

    Google Scholar 

  • Schläpfer, D., Bojinski, S., Schaepman, M., and Richter, R. (2000) Combination of geometric and atmospheric correction for AVIRIS data in rugged terrain. Paper presented at AVIRIS Workshop. In: R.O. Green (Ed.), Summaries of the Ninth Annual JPL Airborne Earth Science Workshop, Pasadena, California (JPL Publ. 00-18). Jet Propulsion Laboratory. Available at ftp://popo.jpl.nasa.gov/pub/docs/workshops/00_docs/Schlapfer_web.pdf

  • Schowengerdt, R.A. (2007) Remote Sensing: Models and Methods for Image Processing, Third Edition, Academic Press, San Diego, CA (ISBN 0-12-628981-6).

    Google Scholar 

  • Seko, K., Yakubi, H., Nakawo, M., Sakai, A., Kadota, T., and Yamada, Y. (1998) Changing surface features of Khumbu Glacier, Nepal Himalayas revealed by SPOT images. Bulletin of Glaciological Research, 16, 33–41.

    Google Scholar 

  • Shukla, A., Arora, M., and Gupta, R. (2010). Synergistic approach for mapping debris-covered glaciers using optical-thermal remote sensing data with inputs from geomorphometric parameters. Remote Sensing of Environment, 114, 1378–1387.

    Google Scholar 

  • Sidjak, R., and Wheate, R. (1999) Glacier mapping of the Illecillewaet Icefield, British Columbia, Canada, using Landsat TM and digital elevation data. International Journal of Remote Sensing, 20(2), 273–284.

    Google Scholar 

  • Singh, A. (1989) Digital change detection techniques using remotely sensed-data. International Journal of Remote Sensing, 10(6), 989–1003.

    Google Scholar 

  • Skvarca, P., Raup, B., and Angelis, H.D. (2003). Recent behaviour of Glaciar Upsala, a fast flowing calving glacier in Lago Argentino, southern Patagonia. Annals of Glaciology, 36, 184–188.

    Google Scholar 

  • Strozzi, T., Paul, F., and Kääb, A. (2010) Glacier mapping with ALOS PALSAR data within the ESA Glob-Glacier project. Paper presented at Proceedings of the ESA Living Planet Symposium.

    Google Scholar 

  • Suzuki, R., Fujita, K., and Ageta, Y. (2007) Spatial distribution of thermal properties on debris-covered glaciers in the Himalayas derived from ASTER data. Bulletin of Glaciological Research, 24, 13–22.

    Google Scholar 

  • Takeuchi, N. (2009) Temporal and spatial variations in spectral reflectance and characteristics of surface dust on Gulkana Glacier, Alaska Range. Journal of Glaciology, 55(192), 701–709.

    Google Scholar 

  • Taschner, S., and Ranzi, R. (2002) Comparing the opportunities of Landsat-TM and ASTER data for monitoring a debris covered glacier in the Italian Alps within the GLIMS project. Paper presented at Proceedings IGARSS 2002, Toronto, ISBN 0-7803-7537-8(4):1044–1046.

    Google Scholar 

  • Vermote, E., Tanre´, D., Deuze, J., Herman, M., and Morcette, J. (1997) Second simulation of the satellite signal in the solar spectrum: An overview. IEEE Transactions on Geoscience and Remote Sensing, 35(3), 675–686.

    Google Scholar 

  • Volesky, J., Stern, R., and Johnson, P. (2003) Geological control of massive sulfide mineralization in the Neoproterozoic Wadi Bidah shear zone, southwestern Saudi Arabia, inferences from orbital remote sensing and field studies. Precambrian Research, 123(2), 235–247.

    Google Scholar 

  • Warren, S.G. (1982) Optical properties of snow. Reviews of Geophysics and Space Physics, 20(1), 67–89.

    Google Scholar 

  • Warren, S., and Brandt, R. (2008) Optical constants of ice from the ultraviolet to the microwave: A revised compilation. Journal of Geophysical Research—Atmospheres, 113(D14).

    Google Scholar 

  • Wessels, R.L., Kargel, J.S., and Kieffer, H.H. (2002) ASTER measurement of supraglacial lakes in the Mount Everest region of the Himalaya. Annals of Glaciology, 34, 399–408.

    Google Scholar 

  • Whalley, W. (1979) Relationship of glacier ice and rock glacier at Grubengletscher, Kanton Wallis, Switzerland. Geografiska Annaler, Series A, Physical Geography, 61(12), 49–61.

    Google Scholar 

  • Whillans, I., and Tseng, Y.-H. (1995) Automatic trackingof crevasses on satellite images. Cold Regions Science and Technology, 23, 201–214.

    Google Scholar 

  • Williams, R.S., Jr., Hall, D.K., and Benson, C.S. (1991) Analysis of glacier facies using satellite techniques. Journal of Glaciology, 37(125), 120–128.

    Google Scholar 

  • Williams, R., Hall, D., Sigurdsson, O., and Chien, J. (1997) Comparison of satellite-derived with groundbased measurements of the fluctuations of the margins of Vatnajökull, Iceland, 1973–92. Annals of Glaciology, 24, 72–80.

    Google Scholar 

  • Winther, J. (1993). Landsat TM derived and in situ summer reflectance of glaciers in Svalbard. Polar Research, 12, 37–55.

    Google Scholar 

  • Wiscombe, W.J. and Warren, S.G. (1980) A model for the spectral albedo of snow, i: Pure snow. Journal of the Atmospheric Sciences, 37, 2712–2733.

    Google Scholar 

  • Zahnen, N., Jung-Rothenhäusler, F., Oerter, H., Wilhelms, F., and Miller, H. (2003) Correlation between Antarctic dry snow properties and backscattering characteristics in RADARSAT SAR imagery. EARSeL eProceedings, 2, 140–148.

    Google Scholar 

Download references

Acknowledgments

This chapter was supported by the ESA Climate Change Initiative project Glaciers\_cci (4000101778/10/I-AM), ESA GlobGlacier (21088/07/I-EC), the EU’s Seventh Framework Programme (FP/2007–2013)/ERC Grant Agreement No. 320816, Norwegian Space Centre/ESA PRODEX (4000106033) and The Research Council of

Norway through the CORRIA (185906/V30) and RASTAR projects (208013/F50).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Kääb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kääb, A. et al. (2014). Glacier Mapping and Monitoring Using Multispectral Data. In: Kargel, J., Leonard, G., Bishop, M., Kääb, A., Raup, B. (eds) Global Land Ice Measurements from Space. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79818-7_4

Download citation

Publish with us

Policies and ethics