Skip to main content

A New Glacier Inventory for the Southern Patagonia Icefield and Areal Changes 1986–2000

  • Chapter
  • First Online:
Global Land Ice Measurements from Space

Part of the book series: Springer Praxis Books ((GEOPHYS))

Abstract

A revised glacier inventory comprising glacier changes between 1986 and 2000 have been compiled for the Southern Patagonia Icefield (SPI) based on Landsat TM and Landsat ETM+ imagery acquired on January 14, 1986 and October 27, 2000, respectively. Elevation data from the Shuttle Radar Topography Mission (SRTM) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) were used to interpret ice divides. The 1986 ice area of the 48 major SPI glaciers is 11,022 ± 412 km2, which represents 85 % of the total SPI area of 13,003 ± 282 km2. Our results agree in general with Aniya et al. (1996), although there are large differences in the basin limits for a few glaciers. Area loss of 489 ± 377 km2 is obtained for the period 1986–2000 for the whole SPI, of which 68 % corresponds to the 48 major glaciers (333 ± 106 km2). Major (> 5 km2) area loss is detected in 20 glaciers (268 ± 87 km2), which accounts for 80 % of the total area loss of the major glaciers between 1986 and 2000. Smaller (< 5 km2) but significant area losses have occurred within 17 other glaciers, all of which have retreated more than 100 m. While our new results confirm the general retreat of the SPI reported earlier (Aniya et al. 1997; Rignot et al. 2003), we show that 9 glaciers within the latitudes of 49°48′–50°25′S had relatively stable frontal positions between 1986 and 2000, 8 of which were previously retreating over the period 1944/1986. Independent evaluation of ice thickness changes within the SPI (Rignot et al. 2003) show that significant thinning exists for only 2 of the 9 glaciers with stable fronts (excluding Moreno Glacier which we regard as stable). The stable frontal positions of the 13 glaciers might be due to the recent increase of precipitation in the central–south sector of the SPI. Although enhanced precipitation has not yet been detected by observations, it is to be expected based on the intensification of the westerly circulation, as has already been observed in the Southern Hemisphere since the mid-1960s (Marshall, 2003).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aniya, M. (1988) Glacier inventory for the Northern Patagonia Icefield, Chile, and variations 1944/45 to 1985/86. Arctic, Antarctic, and Alpine Research, 20(2), 179–187.

    Google Scholar 

  • Aniya, M., Sato, H., Naruse, R., Skvarca, P., and Casassa, G. (1996) The use of satellite and airborne imagery to inventory outlet glaciers of the Southern Patagonia Icefield, South America. Photogrammetric Engineering and Remote Sensing, 62(12), 1361–1369.

    Google Scholar 

  • Aniya, M., Sato, H., Naruse, R., Skvarca, P., and Casassa, G. (1997) Recent glacier variations in the Southern Patagonia Icefield, South America. Arctic, Antarctic, and Alpine Research, 29(1), 1–12.

    Google Scholar 

  • Aravena, J.C., and Luckman, B.H. (2009) Spatiotemporal rainfall patterns in Southern South America. International Journal of Climatology, 29, 2106–2120.

    Google Scholar 

  • ASTER GDEM Validation Team (2009) ASTER Global DEM Validation: Summary Report. Available at https://lpdaac.usgs.gov/lpdaac/products/aster_products_table/routine/global_digital_elevation_model/v1/astgtm_04-09-2010.

  • Barcaza, G., Aniya, M., Matsumoto, T., and Aoki, T. (2009) Satellite-derived equilibrium lines in Northern Patagonia Icefield, Chile, and their implications to glacier variations. Arctic, Antarctic, and Alpine Research, 41(2), 174–182.

    Google Scholar 

  • Blindow, N., and Thyssen, F. (1986) Ice thickness and inner structure of the Vernagtferner (Oetztal Alps): Results of electromagnetic reflection measurements. Zeitschrift für Gletscherkunde und Glazialgeologie, 22(I), 43–60.

    Google Scholar 

  • Carrasco, J.F., Casassa, G., and Rivera, A. (2002) Meteorological and climatological aspects of the Southern Patagonia Icefield. In: G. Casassa, F. Sepulveda, and R.M. Sinclair (Eds.), The Patagonian Icefields: A Unique Natural Laboratory for Environmental and Climate Change Studies, Kluwer Academic/Plenum Press, New York, pp. 29–41.

    Google Scholar 

  • Casassa, G., Brecher, H., Rivera, A., and Aniya, M. (1997) A century-long recession record of Glacier O’Higgins, Chilean Patagonia. Annals of Glaciology, 24, 106–110.

    Google Scholar 

  • Casassa, G., Rivera, A., Aniya, M., and Naruse, R. (2000) Características glacioló gicas del Campo de Hielo Patagónico Sur. Anales del Instituto de la Patagonia, Serie Ciencias Naturales, 28, 5–22 [in Spanish].

    Google Scholar 

  • Casassa, G., Damm, V., Eisenburger, D., Jenett, M., Cárdenas, C., Acunã, C., Rivera, A., and Lange, H. (2001) Estudios glacioló gicos en Patagonia y Chile central utilizando un sistema aerotransportado de radio eco sondage. Anales del Instituto de la Patagonia, Serie Ciencias Naturales, 29, 24–44 [in Spanish].

    Google Scholar 

  • Casassa, G., Rivera, A., Aniya, M., and Naruse, R. (2002) Current knowledge of the Southern Patagonia Icefield. In: G. Casassa, F. Sepulveda, and R.M. Sinclair (Eds.), The Patagonian Icefields: A Unique Natural Laboratory for Environmental and Climate Change Studies, Kluwer Academic/Plenum Press, New York, pp. 67–83.

    Google Scholar 

  • Casassa, G., López, P., Pouyaud, B., and Escobar, F. (2009) Detection of changes in glacial run-off in alpine basins: Examples from North America, the Alps, central Asia and the Andes. Hydrological Processes, 23, 31–41.

    Google Scholar 

  • Casassa, G., Wendt, J., Wendt, A., López, P., Schuler, T., Maas, H.-G., Carrasco, J., and Rivera, A. (2010) Outburst Floods of Glacial Lakes in Patagonia: Is There an Increasing Trend? (Geophysical Research Abstracts, Vol. 12, EGU2010-12821, EGU General Assembly 2010), European Geosciences Union, Munich, Germany

    Google Scholar 

  • Chen, J.L., Wilson, C.R., Tapley, B.D., Blankenship, D.D., and Ivins, E.R. (2007) Patagonia Icefield melting observed by Gravity Recovery and Climate Experiment (GRACE). Geophysical Research Letters, 34, L22501, doi: 10.1029/2007GL031871.

  • Cogley, J.G., Hock, R., Rasmussen, L.A., Arendt, A.A., Bauder, A., Braithwaite, R.J., Jansson, P., Kaser, G.,Möller, M., Nicholson, L. et al. (2011) Glossary of Glacier Mass Balance and Related Terms (IHP-VII Technical Documents in Hydrology No. 86, IACS Contribution No. 2), International Hydrological Program, UNESCO, Paris.

    Google Scholar 

  • Davies, B.J., and Glasser, N.F. (2012) Accelerating recession in Patagonian glaciers from the Little Ice Age (c. ad 1870) to 2011. Journal of Glaciology, 58(212), 1063–1084.

    Google Scholar 

  • De Angelis, H., Rau, F., and Skvarca, P. (2007) Snow zonation on Hielo Patagó nico Sur, Southern Patagonia, derived from Landsat 5 TM data. Global and Planetary Change, 59, 149–158.

    Google Scholar 

  • Dietrich, R., Ivins, E.R., Casassa, G., Lange, H., Wendt, J., and Fritsche, M. (2009) Rapid crustal uplift in Patagonia due to enhanced ice loss. Earth and Planetary Science Letters, doi:10.1016/j.epsl.2009.10.021.

  • DGA (1987) Balance Hídrico de Chile, Direcció General de Aguas, Ministerio de Obras Pu´ blicas, Santiago, Chile, 59 pp. [in Spanish].

    Google Scholar 

  • Dozier, J. (1989) Spectral signature of Alpine snow cover from the Landsat Thematic Mapper. Remote Sensing of Environment, 28, 9–22.

    Google Scholar 

  • Dussaillant, A., Benito, G., Buytaert, W., Carling, P., Meier, C., and Espinoza, F. (2009) Repeated glaciallake outburst floods in Patagonia: An increasing hazard? Natural Hazards, 54(2), 469–481, doi: 10.1007/s11069-009-9479-8.

  • Farr, T.G., Rosen, P.A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L. et al. (2007) The Shuttle Radar Topography Mission. Reviews of Geophysics, 45, RG2004, doi: 10.1029/2005RG000183.

  • Floricioiu, D., Abdel, J.W., and Rott, H. (2012) Surface Elevation Changes and Velocities on the Southern Patagonia Icefield Derived from TerraSAR-X and TanDEMX. Paper presented at ESA CLiC EO Cryosphere, ESRIN, Frascati, Italy, November 15, 2012.

    Google Scholar 

  • Furbish, D.J., and Andrews, J.T. (1984) The use of hypsometry to indicate long-term stability and response of valley glaciers to changes in mass transfer. Journal of Glaciology, 30(105), 199–211.

    Google Scholar 

  • Fürst, J., and Hörhan, T. (2009) Coding of watershed and river hierarchy to support GIS-based hydrological analyses at different scales. Computers & Geosciences, 35(3), 688–696.

    Google Scholar 

  • Gardner, A.S., Moholdt, G., Cogley, J.G., Wouters, B., Arendt, A., Wahr, J., Berthier, E., Hock, R., Pfeffer, W.T., Kaser, G. et al. (2013) A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340, 852, doi: 10.1126/science.1234532.

  • Glasser, N.F., Harrison, S., Jansson, K.N., Anderson, K., and Cowley, A. (2011) Global sea-level contribution from the Patagonian Icefields since the Little Ice Age maximum. Nature Geoscience, 4(5), 303–307.

    Google Scholar 

  • Hall, D.K., Ormsby, J.P., Bindschadler, R.A., and Siddalingaiah, H. (1987) Characterization of snow and ice reflectance zones on glaciers using Landsat TM data. Annals of Glaciology, 9, 104–108.

    Google Scholar 

  • Hulton, N.R.J., Purves, R.S., McCulloch, R.D., Sugden, D.E., and Bentley, M.J. (2002) The Last Glacial Maximum and deglaciation in southern South America. Quaternary Science Reviews, 21, 233–241.

    Google Scholar 

  • Ibarzabal y Donangelo, T., Hofmann, J.A.J., and Naruse, R. (1996) Recent climate changes in southern Patagonia. Bulletin of Glacier Research, 14, 29–36.

    Google Scholar 

  • Ivins, E., Watkins, M., Yuan, D.-N., Dietrich, R., Casassa, G., and Rülke, A. (2011) On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003–2009. Journal of Geophysical Research, 116(B2), B02,403, doi: 10.1029/2010JB007607.

  • Jacob, T., Wahr, J., Pfefer, W.T., and Swenson, S. (2012) Recent contributions of glaciers and ice to sea level rise. Nature, 482, 514–518, doi: 10.1038/nature10847.

  • Keller, K., Casassa, G., Rivera, A., Forsberg, R., and Gundestrup, N. (2007) Airborne laser altimetry survey of Glaciar Tyndall, Patagonia. Global and Planetary Change, 59(1/4), 101–125.

    Google Scholar 

  • Kohshima, S., Takeuchi, N., Uetake, J., Shiraiwa, T., Uemura, R., Yoshida, N., Matoba, S., and Godoi, M.A. (2007) Estimation of net accumulation rate at a Patagonian glacier by ice core analyses using snow algae. Global and Planetary Change, 59(1/4), 236–244.

    Google Scholar 

  • Lliboutry, L. (1956) Nieves y Glaciares de Chile, Fundamentos de Glaciología, Santiago, Chile, 471 pp. [in Spanish].

    Google Scholar 

  • Lopez, P., Chevallier, P., Favier, V., Pouyaud, B., Ordenes, F., and Oerlemans, J. (2010) A regional view of fluctuations in glacier length in southern South America. Global and Planetary Change, 71(1/2), 85–108.

    Google Scholar 

  • Marshall, G.J. (2003) Trends in the Southern Annular Mode from observations and reanalyses. Journal of Climate, 16, 4134–4143.

    Google Scholar 

  • Masiokas, M.H., Rivera, A., Espizua, L.E., Villalba, R., Delgado, S., and Aravena, J.C. (2009) Glacier fluctuations in extratropical South America during the past 1000 years. Palaeogeography Palaeoclimatology Palaeoecology, 281(3/4), 242–268.

    Google Scholar 

  • Motoki, A., Orihashi, Y., Naranjo, J.A., Hirata, D., Skvarca, P., and Anma, R. (2006) Geologic reconnaissance of Lautaro Volcano, Chilean Patagonia. Revista Geológica de Chile, 33(1), 177–187.

    Google Scholar 

  • Naruse, R., Pea, H., Aniya, M., and Inoue, J. (1987) Flow and surface structure of Glaciar Tyndall, the Southern Patagonia Icefield. Bulletin of Glacier Research, 4, 133–140.

    Google Scholar 

  • Naruse, R., Aniya, M., Skvarca, P., and Casassa, G. (1995) Recent variations of calving glaciers in Patagonia, South America, revealed by ground surveys, satellite-data analyses and numerical experiments. Annals of Glaciology, 21, 297–303.

    Google Scholar 

  • Quintana, J.M. (2004) Factors affecting Central Chile rainfall variations at interdecadal scales. M.Sc. thesis, Universidad de Chile, Santiago, Chile, 88 pp. [in Spanish].

    Google Scholar 

  • Rasmussen, L.A., Conway, H., and Raymond, C.F. (2007) Influence of upper air conditions on the Patagonia icefields. Global and Planetary Change, 59(1/4), 203–216.

    Google Scholar 

  • Raymond, C., Neumann, T., Rignot, E., Echelmeyer, K., Rivera, A., and Casassa, G. (2005) Retreat of Tyndall Glacier, Patagonia, over the last half century. Journal of Glaciology, 51(173), 239–247.

    Google Scholar 

  • Rignot, E., Rivera, A., and Casassa, G. (2003) Contribution of the Patagonia icefields of South America to global sea level rise. Science, 302, 434–437.

    Google Scholar 

  • Rivera, A., and Casassa, G. (1999) Volume changes on Pio XI glacier, Patagonia: 1975–1995. Global and Planetary Change, 22(1/4), 233–244.

    Google Scholar 

  • Rivera, A., Aravena, J.C., and Casassa, G. (1997a) Recent fluctuations of Glaciar Pio XI, Patagonia: Discussion of a glacial surge hypothesis. Mountain Research and Development, 17(4), 309–322.

    Google Scholar 

  • Rivera, A., Lange, H., Aravena, J.C., and Casassa, G. (1997b) The 20th century advance of Glacier Pío XI, Southern Patagonia Icefield. Annals of Glaciology, 24, 66–71.

    Google Scholar 

  • Rivera, A., Casassa, G., Bamber, J., and Ka¨ a¨ b, A. (2005) Ice-elevation of Glaciar Chico, southern Patagonia, using ASTER DEMs, aerial photographs and GPS data. Journal of Glaciology, 51(172), 105–112.

    Google Scholar 

  • Rivera, A., Benham, T., Casassa, G., Bamber, J., and Dowdeswell, J. (2007) Ice elevation and areal changes of glaciers from the Northern Patagonia Icefield, Chile. Global and Planetary Change, 59(1/4), 126–137.

    Google Scholar 

  • Rosenblüth, B., Casassa, G., and Fuenzalida, H. (1995) Recent climatic changes in western Patagonia. Bulletin of Glacier Research, 13, 127–132.

    Google Scholar 

  • Rosenblüth, B., Fuenzalida, H.A., and Aceituno, P. (1997) Recent temperature variations in southern South America. International Journal of Climatology, 17, 67–85.

    Google Scholar 

  • Schneider, C., Glaser, M., Kilian, R., Santana, A., Butorovic, N., and Casassa, G. (2003) Weather observations across the southern Andes at 53_S. Physical Geography, 24(2), 97–119.

    Google Scholar 

  • Schwikowski, M., Brütsch, S., Casassa, G., and Rivera, A. (2006) A potential high-elevation ice-core site at Hielo Patagonico Sur. Annals of Glaciology, 43, 8–13.

    Google Scholar 

  • Schwikowski, M., Jenk, T.M., Rufibach, B., Casassa, G., Rivera, A., Rodriguez, M., and Wendt, J. (2007) A New 50 m Long Ice Core from the Southern Patagonian Icefield (Annual Report), Paul Scherrer Institut, Zurich, Switzerland.

    Google Scholar 

  • Shiraiwa, T., Kohshima, S., Uemura, R., Yoshida, N., Matoba, S., Uetake, J., and Godoi, M.A. (2002) High net accumulation rates at Campo de Hielo Patagónico Sur, South America, revealed by analysis of a 45.97 m long ice core. Annals of Glaciology, 35, 84–90.

    Google Scholar 

  • Skvarca, P., Satow, K., Naruse, R., and Leiva, J.C. (1995) Recent thinning, retreat and flow of Upsala Glacier, Patagonia. Bulletin of Glacier Research, 13, 11–20.

    Google Scholar 

  • Skvarca, P., Naruse, R., and De Angelis, H. (2004) Recent thickening trend of Glaciar Perito Moreno, southern Patagonia. Bulletin of Glacier Research, 21, 45–48.

    Google Scholar 

  • Skvarca, P., Marinsek, S., and Aniya, M. (2010) Documenting 23 years of areal loss of Hielo Patagónico Sur, recent climate data and potential impact on Río Santa Cruz water discharge. Paper presented at International Glaciological Conference VICC 2010 ‘‘Ice and Climate Change: A View from the South’’, Valdivia, Chile, February 1–3, 2010 (Abstract Book, 82(98)), Centro de Estudios Científicos (CECS), Valdivia, Chile.

    Google Scholar 

  • Stuefer, M., Rott, H., and Skvarca, P. (2007) Glaciar Perito Moreno, Patagonia: Climate sensitivities and

    Google Scholar 

  • glacier characteristics preceding the 2003/04 and 2005/06 damming events. Journal of Glaciology, 53(180), 3–16.

    Google Scholar 

  • Tucker, C., Grant, D., and Dykstra, J. (2004) NASA’s global orthorectified Landsat data. Photogrammetric Engineering and Remote Sensing, 70(3), 313–322.

    Google Scholar 

  • Vimeux, F., de Angelis, M., Ginot, P., Magand, O., Casassa, G., Pouyaud, B., Falourd, S., and Johnsen, S. (2008) A promising location in Patagonia for paleoclimate and paleoenvironmental reconstructions revealed by a shallow firn core from Monte San Valentin (Northern Patagonia Icefield, Chile). Journal of Geophysical Research—Atmospheres, 113(D16).

    Google Scholar 

  • Waddington, E.D., and Marriott, R.T. (1986) Ice divide migration at Blue Glacier, USA. Annals of Glaciology, 8, 175–176.

    Google Scholar 

  • Warren, C.R., and Sugden, D.E. (1993) The Patagonian Icefields: A glaciological review. Arctic, Antarctic, and Alpine Research, 25(4), 316–331.

    Google Scholar 

  • Williams, R., Hall, D., Sigurdsson, O., and Chien, Y. (1997) Comparison of satellite-derived with groundbased measurements of the fluctuations of the margins of Vatnajö kull, Iceland, 1973–92. Annals of Glaciology, 24, 72–80.

    Google Scholar 

  • Willis, M., Melkonian, A., Pritchard, M., and Rivera, A. (2012) Ice loss from the Southern Patagonian Ice Field, South America, between 2000 and 2012. Geophysical Research Letters, 39(17), L17,501, doi: 10.1029/2012GL053136.

Download references

Acknowledgments

This work was partly supported by the Centro de Estudios Científicos (CECs). CECs is funded by the Chilean Government through the Millennium Science Initiative and the Centers of Excellence Base Financing Program of CONICYT (Comisión Nacional de Investigación Científica y Tecnológica de Chile). Partial support was provided through FONDECYT project 1090752. The manuscript was completed while G.C. was staying at the Institute for Planetary Geodesy, Technological University of Dresden, thanks to an award from the Humboldt Foundation, Germany. Kerstin Binder helped with Fig. 27.1. We acknowledge the ice2sea project, funded by the European Commission’s 7th Framework Programme through grant number 226375, ice2sea manuscript number 138. ASTER data courtesy of NASA/GSFC/METI/Japan Space Systems, the U.S./Japan ASTER Science Team, and the GLIMS project.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Casassa, G., Rodríguez, J.L., Loriaux, T. (2014). A New Glacier Inventory for the Southern Patagonia Icefield and Areal Changes 1986–2000. In: Kargel, J., Leonard, G., Bishop, M., Kääb, A., Raup, B. (eds) Global Land Ice Measurements from Space. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79818-7_27

Download citation

Publish with us

Policies and ethics