Skip to main content

Image Processing

  • Chapter
MR Angiography of the Body

Part of the book series: Diagnostic Imaging ((Med Radiol Diagn Imaging))

  • 1160 Accesses

Magnetic resonance angiography (MRA) sequences generate an amount of data that represents the signal intensity of voxels from the image volume, distributed on consecutive slices and oriented on a user-defined plane. In particular, the availability of wide anatomic coverage coils and high-field scanners, together with fast sequences and high relaxivity contrast media, allows to easily obtain MRA series formed by a high number of thin slices, usually partially overlapped on each other. This poses the problem to achieve a synthetic view of such a large quantity of analytical information, as derived from each single partition, through either a panoramic or a targeted visualization of a given vascular territory. The demonstration of a particular vascular anatomy may also raise the issue of separating or eliminating other structures contained in the same image volume (such as veins in an MR arteriogram, superimposed vessels or stationary tissues with contrast enhancement).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baskaran V, Pereles FS, Nemcek AA Jr, et al.(2002) Gadolinium-enhanced 3D MR angiography of renal artery stenosis: a pilot comparison of maximum intensity projection, multi-planar reformatting, and 3D volume-rendering postprocessing algorithms. Acad Radiol 9(1):50–59

    Article  PubMed  Google Scholar 

  • Calhoun PS, Kuszyk BS, Heath DG, et al. (1999) Three-dimensional volume rendering of spiral CT data: theory and method. Radiographics 19(3):745–764

    CAS  PubMed  Google Scholar 

  • Cirillo S, Tosetti I, Gaita F, et al. (2005) Magnetic resonance angiography of the pulmonary veins before and after radiofrequency ablation for atrial fibrillation. Radiol Med 109(5–6):488–499

    PubMed  Google Scholar 

  • Davis CP, Hany TF, Wildermuth S, et al. (1997) Postprocessing techniques for gadolinium-enhanced three-dimensional MR angiography. Radiographics 17(5):1061–1077

    CAS  PubMed  Google Scholar 

  • Davis CP, Ladd ME, Romanowski BJ, et al. (1996) Human aorta: preliminary results with virtual endoscopy based on three-dimensional MR imaging data sets. Radiology 199(1):37–40

    CAS  PubMed  Google Scholar 

  • Fink C, Hallscheidt PJ, Hosch WP, et al. (2003) Preoperative evaluation of living renal donors: value of contrast-enhanced 3D magnetic resonance angiography and comparison of three rendering algorithms. Eur Radiol 13(4):794–801

    CAS  PubMed  Google Scholar 

  • Fishman EK, Ney DR, Heath DG, et al. (2006) Volume rendering versus maximum intensity projection in CT angiogra-phy: what works best, when, and why. Radiographics 26(3): 905–922

    Article  PubMed  Google Scholar 

  • Glockner JF (2001) Three-dimensional gadolinium-enhanced MR angiography: applications for abdominal imaging. Radiographics 21(2):357–370

    CAS  PubMed  Google Scholar 

  • Hany TF, Schmidt M, Davis CP, et al. (1998) Diagnostic impact of four postprocessing techniques in evaluating contrast-enhanced three-dimensional MR angiography. AJR 170(4):907–912

    CAS  PubMed  Google Scholar 

  • Kabul HK, Hagspiel KD (2006) Cross-sectional vascular imaging with CT and MR angiography. J Nucl Cardiol 13(3):385–401

    Article  PubMed  Google Scholar 

  • Lell MM, Anders K, Uder M, et al. (2006) New techniques in CT angiography. Radiographics 26 (Suppl 1):S45–S62

    Article  PubMed  Google Scholar 

  • Lell M, Fellner C, Baum U, et al. (2007) Evaluation of carotid artery stenosis with multisection CT and MR imaging: infl uence of imaging modality and postprocessing. AJNR 28(1):104–110

    CAS  PubMed  Google Scholar 

  • Mallouhi A, Felber S, Chemelli A, et al. (2003) Detection and characterization of intracranial aneurysms with MR angiography: comparison of volume-rendering and maximum-intensity-projection algorithms. AJR 180(1):55–64

    PubMed  Google Scholar 

  • Mallouhi A, Schocke M, Judmaier W, et al. (2002) 3D MR angiography of renal arteries: comparison of volume rendering and maximum intensity projection algorithms. Radiology 223(2):509–516

    Article  PubMed  Google Scholar 

  • Persson A, Dahlström N, Engellau L, et al. (2004) Volume rendering compared with maximum intensity projection for magnetic resonance angiography measurements of the abdominal aorta. Acta Radiol 45(4):453–459

    Article  CAS  PubMed  Google Scholar 

  • Prince MR, Grist TM, Debatin JF (2003) 3D Contrast MR angiography. Springer, Berlin

    Google Scholar 

  • Prokop M, Shin HO, Schanz A, et al. (1997) Use of maximum intensity projections in CT angiography: a basic review. Radiographics 17(2):433–451

    CAS  PubMed  Google Scholar 

  • Runck F, Steiner R P, Bautz WA, et al. (2008) MR imaging: influ-ence of imaging technique and postprocessing on measurement of internal carotid artery stenosis. AJNR 29(9): 1736–1742

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Parker DL (1999) Performance analysis of maximum intensity projection algorithm for display of MRA images. IEEE Trans Med Imaging 18(12):1154–1169

    Article  CAS  PubMed  Google Scholar 

  • Westenberg JJ, van der Geest RJ, Wasser MN, et al. (2000) Vessel diameter measurements in gadolinium contrast-enhanced three-dimensional MRA of peripheral arteries. Magn Reson Imaging 18(1):13–22

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Faggioni, L., Neri, E. (2010). Image Processing. In: Neri, E., Cosottini, M., Caramella, D. (eds) MR Angiography of the Body. Diagnostic Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79717-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79717-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79716-6

  • Online ISBN: 978-3-540-79717-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics