Skip to main content

Peripheral Vessels

  • Chapter
Book cover MR Angiography of the Body

Part of the book series: Diagnostic Imaging ((Med Radiol Diagn Imaging))

  • 1129 Accesses

Abstract

Magnetic resonance angiography (MRA) has become a fundamental imaging modality in the assessment of peripheral arterial disease. Three-dimensional contrast-enhanced MRA (3D CE-MRA) provides a luminographic study of the arteries, which resembles digital subtraction angiography (DSA). In the literature, 3D CE-MRA has been compared to DSA, which is the standard of reference, and it has shown its superiority in terms of sensitivity and specificity. For this reason and for its high accuracy, nowadays, 3D CE-MRA represents the preferred technique for MRA of the peripheral vessels. The chapter will focus on the clinical applications of MRA in the evaluation of arterial disease of upper and lower limbs, with particular attention on the steno-occlusive disease and on aneurysms. Specific topics will also be addressed, which are the popliteal entrapment, the Takayasu's arteritis, and the thoracic outlet syndrome. The recent introduction of the blood pool contrast agents in the clinical routine will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arend WP, Michel BA, Bloch DA, et al. (1990) The American College of Rheumathology 1990 criteria for the classification of Takayasu arteritis. Arthritis Rheum 33:1129–1134

    Article  CAS  PubMed  Google Scholar 

  • Bongartz G, Mayr M, Bilecen D (2008) Magnetic resonance angiography (MRA) in renally impaired patients: when and how. Eur J Radiol 66:213–219

    Article  PubMed  Google Scholar 

  • Carpenter JP, Barker CF, Roberts B, et al. (1994) Popliteal artery aneurysms: Current management and outcome. J Vasc Surg 19:65–72

    CAS  PubMed  Google Scholar 

  • Carpenter JP, Holland GA, Golden MA, et al. (1997) Magnetic resonance angiography of the aortic arch. J Vasc Surg 25:145–151

    Article  CAS  PubMed  Google Scholar 

  • Carriero A, Maggialetti A, Pinto D, et al. (2002) Contrast-enhanced magnetic resonance angiography MoBI-track in the study of peripheral vascular disease. Cardiovasc Intervent Radiol 25:42–47

    Article  PubMed  Google Scholar 

  • Chan HHL, Tai KS, Yip LKC (2005) Patient with Leriche's syndrome and concomitant superior mesenteric aneurysm: evaluation with contrast-enhanced three-dimensional magnetic resonance angiography, computed tomography angiography and digital subtraction angiography. Australas Radiol 49:233–237

    Article  CAS  PubMed  Google Scholar 

  • Choe YH, Han B, Koh E, et al. (2000) Takayasu's arteritis: assessment of disease activity with contrast-enhanced MR imaging. AJR Am J Roentgenol 175:505–511

    CAS  PubMed  Google Scholar 

  • Dawson I, van Bockel JH, Brand R, et al. (1991) Popliteal artery aneurysms: Long-term follow-up of aneurysmal disease and results of surgical treatment. J Vasc Surg 13:398–407

    Article  CAS  PubMed  Google Scholar 

  • Dellegrottaglie S, Sanz J, Macaluso F, et al. (2007) Technology insight: magnetic resonance angiography for the evaluation of patients with peripheral arterial disease. Nat Clin Pract Cardiovasc Med 4(12):677–687

    Article  PubMed  Google Scholar 

  • Deutschmann HA, Schoellnast H, Portugaller HR, et al. (2006) Routine use of three-dimensional contrast-enhanced moving-table MR angiography in patients with peripheral arterial occlusive disease: comparison with selective digital subtraction angiography. Cardiovasc Intervent Radiol 29:762–770

    Article  PubMed  Google Scholar 

  • Drescher R, Haller S, Köster O, et al. (2006) Standard-protocol moving-table magnetic resonance angiography for planning of interventional procedures in patients with peripheral vascular occlusive disease. Clin Imaging 30:382–387

    Article  PubMed  Google Scholar 

  • Dymarkowski S, Bosmans H, Marchal G, et al. (1999) Three-dimensional MR angiography in the evaluation of thoracic outlet syndrome. AJR Am J Roentgenol 173:1005–1008

    CAS  PubMed  Google Scholar 

  • Earls JP, Rofsky NM, DeCorato DR, et al. (1996) Breath-hold single-dose gadolinium-enhanced three-dimensional MR aortography: usefulness of a timing examination and MR power injector. Radiology 201:705–710

    CAS  PubMed  Google Scholar 

  • Elias DA, White LM, Rubinstein JD, et al. (2003) Clinical evaluation MR imaging features of popliteal artery entrapment and cystic adventitial disease. AJR Am J Roentgenol 180:627–632

    CAS  PubMed  Google Scholar 

  • Ersoy H, Rybicki FJ (2008) MR angiography of the lower extremities. AJR Am J Roentgenol 190:1675–1684

    Article  PubMed  Google Scholar 

  • Flynn PD, Delany DJ, Gray HH (1993) Magnetic resonance angiography in subclavian steal syndrome. Br Heart J 70:193–194

    Article  CAS  PubMed  Google Scholar 

  • Foo TKF, Saranathan M, Prince MR, et al. (1997) Automated detection of bolus arrival and initiation of data acquisition in fast, three-dimensional, gadolinium-enhanced MR angiography. Radiology 203:275–280

    CAS  PubMed  Google Scholar 

  • Gjonnaess E, Morken B, Sandbaek G, et al. (2006) Gadolinium-enhanced magnetic resonance angiography, color duplex and digital subtraction angiography of the lower limb arteries from the aorta to the tibio-peroneal trunk in patients with intermittent claudication. Eur J Vasc Endovasc Surg 31:53–58

    Article  CAS  PubMed  Google Scholar 

  • Gotway MB, Araoz PA, Macedo TA, et al. (2005) Imaging find-ings in Takayasu's arteritis. AJR Am J Roentgenol 184:1945–1950

    PubMed  Google Scholar 

  • Goyen M, Edelman M, Perreault P, et al. (2005) MR angiogra-phy of aortoiliac occlusive disease: a phase III study of the safety and effectiveness of the blood-pool contrast agent MS-325. Radiology 236:825–833

    Article  PubMed  Google Scholar 

  • Graham LM, Zelenock GB, Whitehouse WM, et al. (1980) Clinical significance of arteriosclerotic femoral artery aneurysms. Arch Surg 115:502–507

    CAS  PubMed  Google Scholar 

  • Halldorsson A, Ramsey J, Gallagher C, et al. (2007) Proximal left subclavian artery aneurysms: a case report and review of the literature. Angiology 58:367–371

    Article  CAS  PubMed  Google Scholar 

  • Ho KY, de Haan M V, Oei TK, et al. (1997) MR angiography of the iliac and upper femoral arteries using four different inflow techniques. AJR Am J Roentgenol 169:45–53

    CAS  PubMed  Google Scholar 

  • Ho KY, Leiner T, de Haan M V, et al. (1998) Peripheral vascular tree stenosis: evaluation with moving bed infusion tracking MR angiography. Radiology 206:683–692

    CAS  PubMed  Google Scholar 

  • Ho KY, Leiner T, de Haan MV, et al. (1999) Peripheral MR angiography. Eur Radiol 9(9):1765–1774

    Article  CAS  PubMed  Google Scholar 

  • Holden A, Merrilees S, Mitchell N, et al. (2008) Magnetic resonance imaging of popliteal artery pathologies. Eur J Radiol 67:159–168

    Article  PubMed  Google Scholar 

  • Huber A, Scheidler J, Wintersperger B, et al. (2003) Moving-table MR angiography of the peripheral runoff vessels: comparison of body coil and dedicated phased array coil systems. AJR Am J Roentgenol 180:1365–1373

    CAS  PubMed  Google Scholar 

  • Insko EK, Carpenter JP (2004) Magnetic resonance angiogra-phy. Semin Vasc Surg 17(2):83–101

    Article  PubMed  Google Scholar 

  • Kerr GS, Hallahan CW, Giordano J, et al. (1994) Takayasu arteritis. Ann Intern Med 120:919–929

    CAS  PubMed  Google Scholar 

  • Koelemay M, Lijmer J, Stoker J, et al. (2001) Magnetic resonance angiography for the evaluation of lower extremity arterial disease: a meta-analysis. JAMA 285:1338–1345

    Article  CAS  PubMed  Google Scholar 

  • Korosec FR, Frayne R, Grist TM, et al. (1996) Time-resolved contrast-enhanced 3D MR angiography. Magn Reson Med 36:345–351

    Article  CAS  PubMed  Google Scholar 

  • Krinsky G, Rofsky N, Flyer M, et al. (1996) Gadolinium-enhanced three-dimensional MR angiography of acquired arch vessel disease. AJR Am J Roentgenol 167:981–987

    CAS  PubMed  Google Scholar 

  • Krinsky G, Jacobowitz G, Rofsky G (1998) Gadolinium-enhanced MR angiography of extraanatomic arterial bypass grafts. AJR Am J Roentgenol 170:735–741

    CAS  PubMed  Google Scholar 

  • Lapeyre M, Kobeiter H, Desgranges P, et al. (2005) Assessment of critical limb ischemia in patients with diabetes: comparison of MR angiography and digital subtraction angiog-raphy. AJR Am J Roentgenol 185:1641–1650

    Article  PubMed  Google Scholar 

  • Lauffer RB, Parmelee DJ, Dunham SU, et al. (1998) MS-325: albumin-targeted contrast agent for MR angiography. Radiology 207:529–538

    CAS  PubMed  Google Scholar 

  • Lee VS, Martin DJ, Krinsky GA, et al. (2000) Gadolinium-enhanced MR angiography: artifacts and pitfalls. AJR Am J Roentgenol 175:197–205

    CAS  PubMed  Google Scholar 

  • Leiner T, Kessels AGH, Nelemans PJ, et al. (2005) Peripheral arterial disease: comparison of color duplex US and contrast-enhanced MR angiography for diagnosis. Radiology 235:699–708

    Article  PubMed  Google Scholar 

  • Leiner T, Nijenhuis RJ, Maki JH, et al. (2004) Use of a three-station phased array coil to improve peripheral contrast- enhanced magnetic resonance angiography. J Magn Reson Imaging 20:417–425

    Article  PubMed  Google Scholar 

  • Link J, Steffens JC, Brossmann J, et al. (1998) Contrast-enhanced MR angiography in Leriche's syndrome. Rofo 169(1):22–26

    CAS  PubMed  Google Scholar 

  • Loewe C, Schillinger M, Haumer M, et al. (2004) MRA versus DSA in the assessment of occlusive disease in the aortic arch vessels: accuracy in detecting the severity, number, and length of stenoses. J Endovasc Ther 11:152–160

    Article  PubMed  Google Scholar 

  • Macedo TA, Johnson CM, Hallet JW, et al. (2003) Popliteal artery entrapment syndrome: role of imaging in the diagnosis. AJR Am J Roentgenol 181:1259–1265

    PubMed  Google Scholar 

  • Makhoul RG (1997a) Popliteal artery aneurysms. In: Sabiston JC (ed) Textbook of surgery: the biological basis of modern surgical practice, 15th edn. W.B. Saunders, Philadelphia, PA, pp 1675–1678 (italian version)

    Google Scholar 

  • Makhoul RG (1997b) Femoral artery aneurysms. In: Sabiston JC (ed) Textbook of surgery: the biological basis of modern surgical practice, 15th edn. W.B. Saunders, Philadelphia, PA, pp 1673–1675 (italian version)

    Google Scholar 

  • McCann RL, Schwartz LB, Pieper KS (1991) Vascular complications of cardiac catheterization. J Vasc Surg 14:375–381

    Article  CAS  PubMed  Google Scholar 

  • McDermott VG, Meakem TJ, Carpenter JP, et al. (1995) Magnetic resonance angiography of the distal lower extremity. Clin Radiol 50:741–746

    Article  CAS  PubMed  Google Scholar 

  • Meaney JFM (2003) Magnetic resonance angiography of the peripheral arteries: current status. Eur Radiol 13:836–852

    PubMed  Google Scholar 

  • Meaney JFM, Ridgway JP, Chakraverty S, et al. (1999) Stepping-table gadolinium-enhanced digital subtraction MR angiog-raphy of the aorta and lower extremities arteries: preliminary experience. Radiology 211:59–67

    CAS  PubMed  Google Scholar 

  • Nikolaou K (2006) Whole-body MR angiography using the intravascular contrast agent Vasovist®. In: Goyen M (ed) Real whole-body MRI. ABW Wissenschaftsverlag GmbH, Berlin, pp 38–46

    Google Scholar 

  • Nikolaou K, Kramer H, Grosse C, et al. (2006) High-spatial-resolution multistation MR angiography with parallel imaging and blood pool contrast agent: initial experience. Radiology 241:861–872

    Article  PubMed  Google Scholar 

  • Owen RS, Carpenter JP, Baum RA, et al. (1992) Magnetic resonance imaging of angiographically occult runoff vessels in peripheral arterial occlusive disease. N Engl J Med 326:1577–1581

    CAS  PubMed  Google Scholar 

  • Planken NR, Tordoir JH, Duijm LE, et al. (2008) Magnetic resonance angiographic assessment of upper extremity vessels prior to vascular access surgery: feasibility and accuracy. Eur Radiol 18:158–167

    Article  PubMed  Google Scholar 

  • Prince MR, Chenevert TL, Foo TKF, et al. (1997) Contrast-enhanced abdominal MR angiography: optimization of imaging delay time by automating the detection of contrast material arrival in the aorta. Radiology 203:109–114

    CAS  PubMed  Google Scholar 

  • Prince MR, Yucel EK, Kaufman JA, et al. (1993) Dynamic gadolinium-enhanced three-dimensional abdominal MR arte-riography. J Magn Reson Imaging 3:877–881

    Article  CAS  PubMed  Google Scholar 

  • Ramesh S, Michaels JA, Galland RB (1993) Popliteal aneyrysm: Morphology and management. Br J Surg 80:1531–1553

    Article  CAS  PubMed  Google Scholar 

  • Rayan GM (1998) Thoracic outlet syndrome. J Shoulder Elbow Surg 7:440–451

    Article  CAS  PubMed  Google Scholar 

  • Reid SK, Pagan-Marin HR, Menzoian JO, et al. (2001) Contrast-enhanced moving-table MR angiography: prospective comparison to cathether ateriography for treatment planning peripheral arterial occlusive disease. J Vasc Interv Radiol 12(1):45–53

    Article  CAS  PubMed  Google Scholar 

  • Ruehm SG, Weishaupt D, Debatin JF (2000) Contrast-enhanced MR angiography in patients with aortic occlusion (Leriche syndrome). J Magn Reson Imaging 11:401–410

    Article  CAS  PubMed  Google Scholar 

  • Sabiston DC (1997b) Aneurysms. In: Sabiston JC (ed) Textbook of surgery: the biological basis of modern surgical practice, 15th edn. W.B. Saunders, Philadelphia, PA, p 1638 (italian version)

    Google Scholar 

  • Sabiston DC (1997c) Subclavian artery aneurysms. In: Sabiston JC (ed) Textbook of surgery: the biological basis of modern surgical practice, 15th edn. W.B. Saunders, Philadelphia, PA, p 1662 (italian version)

    Google Scholar 

  • Sabiston DC (1997d) Takayasu's arteritis. In: Sabiston JC (ed) Textbook of surgery: the biological basis of modern surgical practice, 15th edn. W.B. Saunders, Philadelphia, PA, pp 1679–1681 (italian version)

    Google Scholar 

  • Sabiston DC (1997a) Leriche's syndrome. In: Sabiston JC (ed) Textbook of surgery: the biological basis of modern surgical practice, 15th edn. W.B. Saunders, Philadelphia, PA, pp 1689–1691 (italian version)

    Google Scholar 

  • Shadman R, Criqui MH, Bundens W P, et al. (2004) Subclavian artery stenosis: Prevalence, risk factors, and association with cardiovascular diseases. J Am Coll Cardiol 44:618–623

    Article  PubMed  Google Scholar 

  • Slocum MM, Silver D (1997) Alterations in upper limbs circulation. In: Sabiston JC (ed) Textbook of surgery: the biological basis of modern surgical practice, 15th edn. W.B. Saunders, Philadelphia, PA, pp 1747–1749 (italian version)

    Google Scholar 

  • Tatli S, Lipton MJ, Davison BD, et al. (2003) MR imaging of aortic and peripheral vascular disease. Radiographics 23:S59–S78

    Article  PubMed  Google Scholar 

  • Thomsen HS (2006) Nephrogenic systemic fibrosis: a serious late adverse reaction to gadodiamide. Eur Radiol 16:2619–2621

    Article  PubMed  Google Scholar 

  • Tordoir JH, Mickley V (2003) European guidelines for vascular access: clinical algorithms on vascular access for hemodi-alysis. Edtna Erca J 29:131–136

    PubMed  Google Scholar 

  • Turnipseed WD (2002) Popliteal entrapment syndrome. J Vasc Surg 35:910–915

    Article  PubMed  Google Scholar 

  • Unger EC, Schilling JD, Awad AN, et al. (1995) MR angiography of the foot and ankle. J Magn Reson Imaging 5:1–5

    Article  CAS  PubMed  Google Scholar 

  • Utsunomiya D, Sawamura T (2007) Popliteal artery entrapment syndrome: Non-invasive diagnosis by MDCT and MRI. Australas Radiol 51:B101–B103

    Article  PubMed  Google Scholar 

  • Van Grimberge F, Dymarkowski S, Budts W, et al. (2000) Role of magnetic resonance in the diagnosis of subclavian steal syndrome. J Magn Reson Imaging 12:339–342

    Article  PubMed  Google Scholar 

  • Vavrik J, Rohrmoser G, Madani B, et al. (2004) Comparison of MR angiography versus digital subtraction angiography as a basis for planning treatment of lower limb occlusive disease. J Endovasc Ther 11:294–301

    Article  PubMed  Google Scholar 

  • Visser K, Hunink MGM (2000) Peripheral arterial disease: gadolinium-enhanced MR angiography versus color-guided duplex US-A meta-analysis. Radiology 216:67–77

    CAS  PubMed  Google Scholar 

  • Vogt FM, Herborn CU, Parsons EC, et al. (2007) Diagnostic performance of contrast-enhanced MR angiography of the aortoiliac arteries with the blood pool agent Vasovist: initial results in comparison to intraarterial DSA. Rofo 179(4):412–420

    CAS  PubMed  Google Scholar 

  • Wasser MN (2003) MRA of peripheral arteries. In: Higgins CB, de Roos A (eds) Cardiovascular MRI and MRA. Lippincot Williams & Wilkins, Philadelphia, PA, pp 415–431

    Google Scholar 

  • Willinek WA, von Falkenhausen M, Born M, et al. (2005) Noninvasive detection of steno-occlusive disease of the supra-aortic arteries with three-dimensional contrast-enhanced magnetic resonance angiography. Stroke 36:38–43

    Article  PubMed  Google Scholar 

  • Winterer JT, Schleffer K, Paul G, et al. (2000) Optimization of contrast-enhanced MR angiography of the hands with a timing bolus and elliptically reordered 3D pulse sequences. J Comput Assist Tomogr 24(6):903–908

    Article  CAS  PubMed  Google Scholar 

  • Winterer JT, Schaefer O, Uhrmeister P, et al. (2002) Contrast enhanced MR angiography in the assessment of relevant stenoses in occlusive disease of the pelvic and lower limb arteries: diagnostic value of a two-step examination protocol in comparison to conventional DSA. Eur J Radiol 41:153–160

    Article  PubMed  Google Scholar 

  • Woo EY, Fairman RM, Velazquez OC, et al. (2006) Endovascular therapy of symptomatic innominate-subclavian arterial occlusive lesions. Vasc Endovasc Surg 40(1):27–33

    Article  Google Scholar 

  • Wyttenbach R, Gianella S, Alerci M, et al. (2003) Prospective blinded evaluation of Gd-DOTA- versus Gd-BOPTA-enhanced peripheral MR angiography, as compared with digital subtraction angiography. Radiology 227:261–269

    Article  PubMed  Google Scholar 

  • Yamada I, Nakagawa T, Himeno Y, et al. (2000) Takayasu arteri-tis: diagnosis with breath-hold contrast-enhanced three-dimensional MR angiography. J Magn Reson Imaging 11:481–487

    Article  CAS  PubMed  Google Scholar 

  • Yamada I, Numano F, Suzuki S (1993) Takayasu arteritis: evaluation with MR imaging. Radiology 188:89–94

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

De Cobelli, F., Belloni, E., Del Maschio, A. (2010). Peripheral Vessels. In: Neri, E., Cosottini, M., Caramella, D. (eds) MR Angiography of the Body. Diagnostic Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79717-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79717-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79716-6

  • Online ISBN: 978-3-540-79717-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics