Skip to main content

Multiple-Rangefinders Calibration Based on Light-Section Method Using Spheres

  • Chapter
Smart Sensors and Sensing Technology

Part of the book series: Lecture Notes Electrical Engineering ((LNEE,volume 20))

  • 2496 Accesses

Abstract

This paper shows a camera and projector calibration scheme based on the light section method using spheres for multiple rangefinders. The proposed calibration fits the scanning data based on the light-section method to the shape of each sphere. The procedure of the proposed calibration consists of two steps in camera and projector calibration. First, the locations of spheres are estimated by the projected spheres’ images in an image sensor. Second, the camera and projector parameters are obtained using the locations of spheres. We propose an objective function with both of the locations and the shapes of spheres. The estimated location of spheres only using a camera has an error. Therefore we calibrate all parameters changing the ratio of the locations and shapes in the function. And also, we extend the calibration method to the multiple-rangefinder system. The range accuracy is similar to the other non-self calibration method. We calibrate the camera and projector parameter only using spheres without known position, which contributes low cost calibration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. S. J. Maybank and O. D. Faugeras (1992) A theory of self-calibration of a moving camera. Journal of Computer Vision, 8(2):123–151

    Article  Google Scholar 

  2. R. I. Hartley (1994) An Algorithm for Self Calibration from Several Views. In: Proc. IEEE Computer Vision and Pattern Recognition, pp 21–23

    Google Scholar 

  3. E. E. Hemayed (2003) A survey of camera self-calibration. In: Proc. IEEE international Conference on Advanced Video and Signal Based Surveillance, pp 351–357

    Google Scholar 

  4. K. Deguchi (1982) A Survey of Recent Camera Calibration Techniques. IPSJ SIG Notes. 93(25)

    Google Scholar 

  5. R. Y. Tsai (1987) A Cersatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses. IEEE journal of Robotics and Automation, RA-3(4):323–344

    Article  Google Scholar 

  6. Z. Zhang (2000) A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11):1330–1334

    Article  Google Scholar 

  7. J. Heikkilä (2000) Geometric camera calibration using circular control points. IEEE Transaction Pattern Analysis and Machine Intelligence, 22(10):1066–1077

    Article  Google Scholar 

  8. W. Sun and J. R. Cooperstock (2006) An empirical evaluation of factors influencing camera calibration accuracy using three publicly available techniques. Journal of Machine Vision and Applications, 17(1):51–67

    Article  Google Scholar 

  9. T. Kanade, P. Rander and P. J. Narayan (1997) Virtualized reality: constructing virtual worlds from real scenes. IEEE Multimedia, 4(1):34–47

    Article  Google Scholar 

  10. R. I. Hartley and A. Zisserman (2004) Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge

    Google Scholar 

  11. M. Agrawal and L. S. Davis (2003) Complete camera calibration using spheres: A semi-definite programming approach. In: Proc. 9th IEEE International Conference on Computer Vision, pp 782–791

    Google Scholar 

  12. H. Zhang, K.Y. K. Wong and G. Zhang (2007) Camera calibration from images of spheres. IEEE Transaction on Pattern Analysis and Machine Intelligence, 29(3):499–502

    Article  MathSciNet  Google Scholar 

  13. D. A. Forsyth and J. Ponce (2002) Computer Vision: A modern Approach. Prentice Hall, Englewood Cliffs

    Google Scholar 

  14. Computational infrastructure for operations research. http://www.coin-or.org

    Google Scholar 

  15. Y. Oike, M. Ikeda and K. Asada (2004) Design and Implementation of Real-Time 3-D Image Sensor With 640x480 Pixel Resolution. IEEE Journal of Solid-State Circuits, 39(4):622–628

    Article  Google Scholar 

  16. Y. Yachide, Y. Oike, M. Ikeda and K. Asada (2005) Real-time 3-D measurement system based on light-section method using smart image sensor. In: Proc. IEEE international Conference on Image Processing, pp. 1008–1011

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yachide, Y., Ikeda, M., Asada, K. (2008). Multiple-Rangefinders Calibration Based on Light-Section Method Using Spheres. In: Mukhopadhyay, S.C., Gupta, G.S. (eds) Smart Sensors and Sensing Technology. Lecture Notes Electrical Engineering, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79590-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79590-2_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79589-6

  • Online ISBN: 978-3-540-79590-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics