Identifying Meaningful Places: The Non-parametric Way

  • Petteri Nurmi
  • Sourav Bhattacharya
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5013)


Gathering and analyzing location data is an important part of many ubiquitous computing applications. The most common way to represent location information is to use numerical coordinates, e.g., latitudes and longitudes. A problem with this approach is that numerical coordinates are usually meaningless to a user and they contrast with the way humans refer to locations in daily communication. Instead of using coordinates, humans tend to use descriptive statements about their location; for example, ”I’m home” or ”I’m at Starbucks.” Locations, to which a user can attach meaningful and descriptive semantics, are often called places. In this paper we focus on the automatic extraction of places from discontinuous GPS measurements. We describe and evaluate a non-parametric Bayesian approach for identifying places from this kind of data. The main novelty of our approach is that the algorithm is fully automated and does not require any parameter tuning. Another novel aspect of our algorithm is that it can accurately identify places without temporal information. We evaluate our approach using data that has been gathered from different users and different geographic areas. The traces that we use exhibit different characteristics and contain data from daily life as well as from traveling abroad. We also compare our algorithm against the popular k-means algorithm. The results indicate that our method can accurately identify meaningful places from a variety of location traces and that the algorithm is robust against noise.


Markov Chain Monte Carlo Geographic Information System Gaussian Mixture Model Dirichlet Process Social Identity Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hariharan, R., Krumm, J., Horvitz, E.: Web-enhanced GPS. In: Strang, T., Linnhoff-Popien, C. (eds.) LoCA 2005. LNCS, vol. 3479, pp. 95–104. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Ashbrook, D., Starner, T.: Using GPS to learn significant locations and predict movement across multiple users. Personal and Ubiquitous Computing 7(5), 275–286 (2003)CrossRefGoogle Scholar
  3. 3.
    Relph, E.: Place and Placelessness. Pion Books, London (1976)Google Scholar
  4. 4.
    Turner, P., Turner, S.: Two phenomenological studies of place. In: Proceedings of the 17th Conference on Human Computer Interaction (HCI): People and Computers, pp. 21–35 (2003)Google Scholar
  5. 5.
    Antoniak, C.E.: Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. The Annals of Statistics 2(6), 1152–1174 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    MacEachern, S., Müller, P.: Estimating mixture of Dirichlet process models. Journal of Computational and Graphical Statistics 7, 223–238 (1998)Google Scholar
  7. 7.
    Rasmussen, C.E.: The infinite Gaussian mixture model. In: Solla, S.A., Leen, T.K., Müller, K.R. (eds.) Advances in Neural Information Processing Systems (NIPS), vol. 12, pp. 554–560. MIT Press, Cambridge (2000)Google Scholar
  8. 8.
    Saegert, S., Winkel, G.H.: Environmental psychology. Annual Review on Psychology 41, 441–477 (1990)CrossRefGoogle Scholar
  9. 9.
    Zhou, C., Ludford, P., Frankowski, D., Terveen, L.: An experiment in discovering personally meaningful places from location data. In: Proceedings of the Conference on Human Factors in Computing Systems (CHI), pp. 2029–2032 (2005) Late Breaking Results: Short PapersGoogle Scholar
  10. 10.
    Delamater, J. (ed.): Handbook of Social Psychology. Handbooks of Sociology and Social Research. Springer, Heidelberg (2006)Google Scholar
  11. 11.
    Nurmi, P., Koolwaaij, J.: Identifying meaningful locations. In: Proceedings of the 3rd Annual Conference on Mobile and Ubiquitous Computing (MobiQuitous 2006), IEEE Computer Society, Los Alamitos (2006)Google Scholar
  12. 12.
    Zhou, C., Ludford, P., Frankowski, D., Terveen, L.: Talking about place: An experiment in how people describe places. In: Ferscha, A., Mayrhofer, R., Strang, T., Linnhoff-Popien, C., Dey, A., Butz, A., Schmidt, A. (eds.) Adjunct Proceedings of the Third International Conference on Pervasive Computing (PERVASIVE) (2005)Google Scholar
  13. 13.
    Otsason, V., Varshavsky, A., LaMarca, A., de Lara, E.: Accurate GSM indoor localization. In: Beigl, M., Intille, S.S., Rekimoto, J., Tokuda, H. (eds.) UbiComp 2005. LNCS, vol. 3660, pp. 141–158. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Chen, M.Y., Sohn, T., Chmelev, D., Hähnel, D., Hightower, J., Hughes, J., LaMarca, A., Potter, F., Smith, I.E., Varshavsky, A.: Practical metropolitan-scale positioning for GSM phones. In: Dourish, P., Friday, A. (eds.) UbiComp 2006. LNCS, vol. 4206, pp. 225–242. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Marmasse, N., Schmandt, C.: A user-centered location model. Personal and Ubiquitous Computing 6(5-6), 318–321 (2002)CrossRefGoogle Scholar
  16. 16.
    Toyama, N., Ota, T., Kato, F., Toyota, Y., Hattori, T., Hagino, T.: Exploiting multiple radii to learn significant locations. In: Strang, T., Linnhoff-Popien, C. (eds.) LoCA 2005. LNCS, vol. 3479, pp. 157–168. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Zhou, C., Frankowski, D., Ludford, P., Shekhar, S., Terveen, L.: Discovering personal gazetteers: an interactive clustering approach. In: Proceedings of the 12th annual ACM international workshop on Geographic information systems (GIS), pp. 266–273. ACM Press, New York (2004)Google Scholar
  18. 18.
    Patterson, D.J., Liao, L., Gajos, K., Collier, M., Livic, N., Olson, K., Wang, S., Fox, D., Kautz, H.A.: Opportunity knocks: A system to provide cognitive assistance with transportation services. In: Davies, N., Mynatt, E.D., Siio, I. (eds.) UbiComp 2004. LNCS, vol. 3205, pp. 433–450. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Hariharan, R., Toyama, K.: Project Lachesis: Parsing and modeling location histories. In: Egenhofer, M., Freksa, C., Miller, H. (eds.) GIScience 2004. LNCS, vol. 3234, Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Adams, B., Phung, D., Venkatesh, S.: Extraction of social context and application to personal multimedia exploration. In: Proceedings of the ACM Conference on Multimedia (MM), pp. 987–996. ACM, New York (2006)Google Scholar
  21. 21.
    Liu, J., Wolfson, O., Yin, H.: Extracting semantic location from outdoor positioning systems. In: Proceedings of the 7th International Conference on Mobile Data Management (MDM), IEEE Computer Society, Los Alamitos (2006)Google Scholar
  22. 22.
    Aipperspach, R., Rattenbury, T., Woodruff, A., Canny, J.: A quantitative method for revealing and comparing places in the home. In: Dourish, P., Friday, A. (eds.) UbiComp 2006. LNCS, vol. 4206, pp. 1–18. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Kang, J., Welbourne, W., Stewart, B., Borriello, G.: Extracting places from traces of locations. In: Proceedings of the 2nd ACM international workshop on Wireless mobile applications and services on WLAN hotspots (WMASH), pp. 110–118. ACM Press, New York (2004)CrossRefGoogle Scholar
  24. 24.
    Hightower, J., Consolvo, S., LaMarca, A., Smith, I., Hughes, J.: Learning and recognizing the places we go. In: Beigl, M., Intille, S.S., Rekimoto, J., Tokuda, H. (eds.) UbiComp 2005. LNCS, vol. 3660, pp. 159–176. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  25. 25.
    Laasonen, K., Raento, M., Toivonen, H.: Adaptive on-device location recognition. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 287–304. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  26. 26.
    Meneses, F., Moreira, A.: Using GSM CellID positioning for place discovering. In: Proceedings of the 1st Workshop on Location Based Services for Health Care (Locare), pp. 34–42 (2006)Google Scholar
  27. 27.
    Gelman, A., Carlin, J., Stern, H., Rubin, D.: Bayesian Data Analysis. Chapman & Hall/CRC (2004)Google Scholar
  28. 28.
    Neal, R.: Markov chain methods for Dirichlet process mixture models. Technical Report 9815, University of Toronto, Department of Statistics (1998)Google Scholar
  29. 29.
    Gilks, W., Spiegelhalter, D., Richardson, S.: Markov Chain Monte Carlo in Practice. Chapman & Hall/CRC (1996)Google Scholar
  30. 30.
    West, M.: Hyperparameter estimation in Dirichlet process mixture models. ISDS Discussion Paper #92-A03, Duke University (1992)Google Scholar
  31. 31.
    Gilks, W., Wild, P.: Adaptive rejection sampling for Gibbs sampling. Applied Statistics 41, 337–348 (1992)CrossRefzbMATHGoogle Scholar
  32. 32.
    Jain, S., Neal, R.: Splitting and merging components of a nonconjugate dirichlet process mixture model. Bayesian Analysis 2(3), 445–472 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Daumé III, H.: Fast search for dirichlet process mixture models. In: Meila, M., Shen, X. (eds.) Proceedings of the 11th International Conference on Artificial Intelligence and Statistics (AISTATS), pp. 83–90 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Petteri Nurmi
    • 1
  • Sourav Bhattacharya
    • 1
  1. 1.Helsinki Institute for Information Technology HIIT Department of Computer ScienceUniversity of HelsinkiFinland

Personalised recommendations