Skip to main content

Multiscale Computations for Flow and Transport in Heterogeneous Media

  • Chapter
Quantum Transport

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 1946))

Abstract

Many problems of fundamental and practical importance have multiple scale solutions. The direct numerical solution of multiple scale problems is difficult to obtain even with modern supercomputers. The major difficulty of direct solutions is due to disparity of scales. From an engineering perspective, it is often sufficient to predict macroscopic properties of the multiple-scale systems, such as the effective conductivity, elastic moduli, permeability, and eddy diffusivity. Therefore, it is desirable to develop a method that captures the small scale effect on the large scales, but does not require resolving all the small scale features. The purpose of this lecture note is to review some recent advances in developing multiscale finite element (finite volume) methods for flow and transport in strongly heterogeneous porous media. Extra effort is made in developing a multiscale computational method that can be potentially used for practical multiscale for problems with a large range of nonseparable scales. Some recent theoretical and computational developments in designing global upscaling methods will be reviewed. The lectures can be roughly divided into four parts. In part 1, we review some homogenization theory for elliptic and hyperbolic equations. This homogenization theory provides a guideline for designing effective multiscale methods. In part 2, we review some recent developments of multiscale finite element (finite volume) methods. We also discuss the issue of upscaling one-phase, two-phase flows through heterogeneous porous media and the use of limited global information in multiscale finite element (volume) methods. In part 4, we will consider multiscale simulations of two-phase flow immiscible flows using a flow-based adaptive coordinate, and introduce a theoretical framework which enables us to perform global upscaling for heterogeneous media with long range connectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Aarnes, On the use of a mixed multiscale finite element method for greater flexibility and increased speed or improved accuracy in reservoir simulation, SIAM MMS, 2 (2004), pp. 421–439.

    MATH  MathSciNet  Google Scholar 

  2. J. Aarnes, Y. R. Efendiev, and L. Jiang, Analysis of multiscale finite element methods using global information for two-phase flow simulations. submitted.

    Google Scholar 

  3. J. Aarnes and T. Y. Hou An Efficient Domain Decomposition Preconditioner for Multiscale Elliptic Problems with High Aspect Ratios, Acta Mathematicae Applicatae Sinica, 18 (2002), 63-76.

    Article  MATH  MathSciNet  Google Scholar 

  4. R. A. Adams, Sobolev spaces, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65.

    Google Scholar 

  5. T. Arbogast, Implementation of a locally conservative numerical subgrid upscaling scheme for two-phase Darcy flow, Comput. Geosci., 6 (2002), pp. 453–481. Locally conservative numerical methods for flow in porous media.

    Article  MATH  MathSciNet  Google Scholar 

  6. T. Arbogast and K. Boyd, Subgrid upscaling and mixed multiscale finite elements. to appear in SIAM Num. Anal.

    Google Scholar 

  7. M. Avellaneda and F.-H. Lin, Compactness methods in the theory of homogenization, Comm. Pure Appl. Math., 40 (1987), pp. 803–847.

    Article  MATH  MathSciNet  Google Scholar 

  8. I. Babuska, U. Banerjee, and J. E. Osborn, Survey of meshless and generalized finite element methods: A unified approach, Acta Numerica, 2003, pp. 1-125.

    Google Scholar 

  9. I. Babuska, G. Caloz, and E. Osborn, Special Finite Element Methods for a Class of Second Order Elliptic Problems with Rough Coefficients, SIAM J. Numer. Anal., 31 (1994), 945-981.

    Article  MATH  MathSciNet  Google Scholar 

  10. I. Babuška and J. M. Melenk, The partition of unity method, Internat. J. Numer. Methods Engrg., 40 (1997), pp. 727–758.

    Article  MATH  MathSciNet  Google Scholar 

  11. I. Babuska and E. Osborn, Generalized Finite Element Methods: Their Performance and Their Relation to Mixed Methods, SIAM J. Numer. Anal., 20 (1983), 510-536.

    Article  MATH  MathSciNet  Google Scholar 

  12. I. Babuska and W. G. Szymczak, An Error Analysis for the Finite Element Method Applied to Convection-Diffusion Problems, Comput. Methods Appl. Math. Engrg, 31 (1982), 19-42.

    Article  MATH  MathSciNet  Google Scholar 

  13. A. Bensoussan, J. L. Lions, and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, Volume 5 of Studies in Mathematics and Its Applications, North-Holland Publ., 1978.

    Google Scholar 

  14. A. Bourgeat, Homogenized Behavior of Two-Phase Flows in Naturally Fractured Reservoirs with Uniform Fractures Distribution, Comp. Meth. Appl. Mech. Engrg, 47 (1984), 205-216.

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Bourgeat and A. Mikelić, Homogenization of two-phase immiscible flows in a one-dimensional porous medium, Asymptotic Anal., 9 (1994), pp. 359–380.

    MATH  MathSciNet  Google Scholar 

  16. M. Brewster and G. Beylkin, A Multiresolution Strategy for Numerical Homogenization, ACHA, 2(1995), 327-349.

    MATH  MathSciNet  Google Scholar 

  17. F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Springer–Verlag, Berlin – Heidelberg – New-York, 1991.

    MATH  Google Scholar 

  18. F. Brezzi, L. P. Franca, T. J. R. Hughes and A. Russo, b = ∫ g, Comput. Methods in Appl. Mech. and Engrg., 145 (1997), 329-339.

    Article  MATH  MathSciNet  Google Scholar 

  19. Z. Chen and T. Y. Hou, A mixed multiscale finite element method for elliptic problems with oscillating coefficients, Math. Comp., 72 (2002), pp. 541–576 (electronic).

    Article  MathSciNet  Google Scholar 

  20. M. Christie and M. Blunt, Tenth SPE comparative solution project: A comparison of upscaling techniques, SPE Reser. Eval. Eng., 4 (2001), pp. 308–317.

    Google Scholar 

  21. M. E. Cruz and A. Petera, A Parallel Monte-Carlo Finite Element Procedure for the Analysis of Multicomponent Random Media, Int. J. Numer. Methods Engrg, 38 (1995), 1087-1121.

    Article  MATH  Google Scholar 

  22. J. E. Dendy, J. M. Hyman, and J. D. Moulton, The Black Box Multigrid Numerical Homogenization Algorithm, J. Comput. Phys., 142 (1998), 80-108.

    Article  MATH  MathSciNet  Google Scholar 

  23. C. V. Deutsch and A. G. Journel, GSLIB: Geostatistical software library and user’s guide, 2nd edition, Oxford University Press, New York, 1998.

    Google Scholar 

  24. M. Dorobantu and B. Engquist, Wavelet-based Numerical Homogenization, SIAM J. Numer. Anal., 35 (1998), 540-559.

    Article  MATH  MathSciNet  Google Scholar 

  25. J. Douglas, Jr. and T.F. Russell, Numerical Methods for Convection-dominated Diffusion Problem Based on Combining the Method of Characteristics with Finite Element or Finite Difference Procedures, SIAM J. Numer. Anal. 19 (1982), 871–885.

    Article  MATH  MathSciNet  Google Scholar 

  26. L. J. Durlofsky, Numerical Calculation of Equivalent Grid Block Permeability Tensors for Heterogeneous Porous Media, Water Resour. Res., 27 (1991), 699-708.

    Article  Google Scholar 

  27. L.J. Durlofsky, R.C. Jones, and W.J. Milliken, A Nonuniform Coarsening Approach for the Scale-up of Displacement Processes in Heterogeneous Porous Media, Adv. Water Resources, 20 (1997), 335–347.

    Article  Google Scholar 

  28. B. B. Dykaar and P. K. Kitanidis, Determination of the Effective Hydraulic Conductivity for Heterogeneous Porous Media Using a Numerical Spectral Approach: 1. Method, Water Resour. Res., 28 (1992), 1155-1166.

    Google Scholar 

  29. W. E, Homogenization of linear and nonlinear transport equations, Comm. Pure Appl. Math., XLV (1992), pp. 301–326.

    Google Scholar 

  30. W. E and B. Engquist, The heterogeneous multi-scale methods, Comm. Math. Sci., 1(1) (2003), pp. 87–133.

    MATH  MathSciNet  Google Scholar 

  31. Y. R. Efendiev, Multiscale Finite Element Method (MsFEM) and its Applications, Ph. D. Thesis, Applied Mathematics, Caltech, 1999.

    Google Scholar 

  32. Y. Efendiev, V. Ginting, T. Y. Hou, and R. Ewing, Accurate multiscale finite element methods of two-phase flow simulations. J. Comput. Phys., 220 (2006), 155-174.

    Article  MATH  MathSciNet  Google Scholar 

  33. Y. Efendiev, T. Hou, and V. Ginting, Multiscale finite element methods for nonlinear problems and their applications, Comm. Math. Sci., 2 (2004), pp. 553–589.

    MATH  MathSciNet  Google Scholar 

  34. Y. Efendiev, T. Hou, and T. Strinopoulos, Multiscale simulations of porous media flows in flow-based coordinate system, to appear in Comp. Geosciences.

    Google Scholar 

  35. Y. R. Efendiev, T. Y. Hou, and X. H. Wu, Convergence of A Nonconforming Multiscale Finite Element Method, SIAM J. Numer. Anal., 37 (2000), 888-910.

    Article  MATH  MathSciNet  Google Scholar 

  36. Y. Efendiev and A. Pankov, Homogenization of nonlinear random parabolic operators, Advances in Differential Equations, vol. 10,Number 11, 2005, pp., 1235-1260

    MATH  MathSciNet  Google Scholar 

  37. Y. Efendiev and A. Pankov, Numerical homogenization of nonlinear random parabolic operators, SIAM Multiscale Modeling and Simulation, 2(2) (2004), pp. 237–268.

    Article  MATH  MathSciNet  Google Scholar 

  38. Y. R. Efendiev and L. J. Durlofsky, Numerical modeling of subgrid heterogeneity in two phase flow simulations, Water Resour. Res., 38(8) (2002), p. 1128.

    Article  Google Scholar 

  39. Y. R. Efendiev, L. J. Durlofsky, S. H. Lee, Modeling of Subgrid Effects in Coarse-scale Simulations of Transport in Heterogeneous Porous Media, WATER RESOUR RES, 36 (2000), 2031-2041.

    Article  Google Scholar 

  40. Y. R. Efendiev and B. Popov, On homogenization of nonlinear hyperbolic equations, Communications on Pure and Applied Analysis, 4(2) (2005), pp. 295–309.

    Article  MATH  MathSciNet  Google Scholar 

  41. R. Eymard, T. Gallouët, and R. Herbin, Finite volume methods, in Handbook of numerical analysis, Vol. VII, Handb. Numer. Anal., VII, North-Holland, Amsterdam, 2000, 713–1020.

    Google Scholar 

  42. J. Fish and K.L. Shek, Multiscale Analysis for Composite Materials and Structures, Composites Science and Technology: An International Journal, 60 (2000), 2547-2556.

    Article  Google Scholar 

  43. J. Fish and Z. Yuan, Multiscale enrichment based on the partition of unity, International Journal for Numerical Methods in Engineering, 62, (2005), 1341–1359.

    Article  MATH  Google Scholar 

  44. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer, Berlin, New York, 2001.

    MATH  Google Scholar 

  45. J. Glimm, H. Kim, D. Sharp, and T. Wallstrom A Stochastic Analysis of the Scale Up Problem for Flow in Porous Media, Comput. Appl. Math., 17 (1998), 67-79.

    MATH  MathSciNet  Google Scholar 

  46. T. Hou, X. Wu, and Y. Zhang, Removing the cell resonance error in the multiscale finite element method via a petrov-galerkin formulation, Communications in Mathematical Sciences, 2(2) (2004), 185–205.

    MATH  MathSciNet  Google Scholar 

  47. T. Y. Hou, A. Westhead, and D. P. Yang, A framework for modeling subgrid effects for two-phase flows in porous media. to appear in SIAM Multiscale Modeling and Simulation.

    Google Scholar 

  48. T. Y. Hou and X. H. Wu, A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media, J. Comput. Phys., 134 (1997), 169-189.

    Article  MATH  MathSciNet  Google Scholar 

  49. T. Y. Hou and X. H. Wu, A Multiscale Finite Element Method for PDEs with Oscillatory Coefficients, Proceedings of 13th GAMM-Seminar Kiel on Numerical Treatment of Multi-Scale Problems, Jan 24-26, 1997, Notes on Numerical Fluid Mechanics, Vol. 70, ed. by W. Hackbusch and G. Wittum, Vieweg-Verlag, 58-69, 1999.

    Google Scholar 

  50. T. Y. Hou, X. H. Wu, and Z. Cai, Convergence of a Multiscale Finite Element Method for Elliptic Problems With Rapidly Oscillating Coefficients, Math. Comput., 68 (1999), 913-943.

    Article  MATH  MathSciNet  Google Scholar 

  51. T. Y. Hou, D.-P. Yang, and K. Wang, Homogenization of Incompressible Euler Equation. J. Comput. Math., 22 (2004), 220-229.

    MATH  MathSciNet  Google Scholar 

  52. T. Y. Hou, D. P. Yang, and H. Ran, Multiscale Analysis in the Lagrangian Formulation for the 2-D Incompressible Euler Equation, Discrete and Continuous Dynamical Systems, 13 (2005), 1153-1186.

    Article  MATH  MathSciNet  Google Scholar 

  53. T. Y. Hou, D.-P. Yang, and H. Ran, Multiscale analysis and computation for the 3-D incompressible Navier-Stokes equations, Multiscale Modeling and Simulation, 6(4) (2008), 1317-1346.

    Article  MATH  MathSciNet  Google Scholar 

  54. T. Y. Hou and X. Xin, Homogenization of linear transport equations with oscillatory vector fields, SIAM J. Appl. Math., 52 (1992), pp. 34–45.

    Article  MATH  MathSciNet  Google Scholar 

  55. Y. Huang and J. Xu, A partition-of-unity finite element method for elliptic problems with highly oscillating coefficients, preprint.

    Google Scholar 

  56. T. J. R. Hughes, Multiscale Phenomena: Green’s Functions, the Dirichlet-to-Neumann Formulation, Subgrid Scale Models, Bubbles and the Origins of Stabilized Methods, Comput. Methods Appl. Mech Engrg., 127 (1995), 387-401.

    Article  MATH  MathSciNet  Google Scholar 

  57. T. J. R. Hughes, G. R. Feijóo, L. Mazzei, J.-B. Quincy, The Variational Multiscale Method – A Paradigm for Computational Mechanics, Comput. Methods Appl. Mech Engrg., 166(1998), 3-24.

    Article  MATH  MathSciNet  Google Scholar 

  58. M. Gerritsen and L. J. Durlofsky, Modeling of fluid flow in oil reservoirs, Annual Reviews in Fluid Mechanics, 37 (2005), pp. 211–238.

    Article  Google Scholar 

  59. P. Jenny, S. H. Lee, and H. Tchelepi, Adaptive multi-scale finite volume method for multi-phase flow and transport in porous media, Multiscale Modeling and Simulation, 3 (2005), pp. 30–64.

    Article  Google Scholar 

  60. V. V. Jikov, S. M. Kozlov, and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, 1994, Translated from Russian.

    Google Scholar 

  61. Ioannis G. Kevrekidis, C. William Gear, James M. Hyman, Panagiotis G. Kevrekidis, Olof Runborg, and Constantinos Theodoropoulos, Equation-free, coarse-grained multiscale computation: enabling microscopic simulators to perform system-level analysis, Commun. Math. Sci. 1 (2003), no. 4, 715–762.

    MATH  MathSciNet  Google Scholar 

  62. S. Knapek, Matrix-Dependent Multigrid-Homogenization for Diffusion Problems, in the Proceedings of the Copper Mountain Conference on Iterative Methods, edited by T. Manteuffal and S. McCormick, volume I, SIAM Special Interest Group on Linear Algebra, Cray Research , 1996.

    Google Scholar 

  63. P. Langlo and M.S. Espedal, Macrodispersion for Two-phase, Immiscible Flow in Porous Media, Adv. Water Resources 17 (1994), 297–316.

    Article  Google Scholar 

  64. A. M. Matache, I. Babuska, and C. Schwab, Generalized p-FEM in Homogenization, Numer. Math. 86 (2000), 319-375.

    Article  MATH  MathSciNet  Google Scholar 

  65. A. M. Matache and C. Schwab, Homogenization via p-FEM for Problems with Microstructure, Appl. Numer. Math. 33 (2000), 43-59.

    Article  MATH  MathSciNet  Google Scholar 

  66. J. F. McCarthy, Comparison of Fast Algorithms for Estimating Large-Scale Permeabilities of Heterogeneous Media, Transport in Porous Media, 19 (1995), 123-137.

    Article  MathSciNet  Google Scholar 

  67. D. W. McLaughlin, G. C. Papanicolaou, and O. Pironneau, Convection of Microstructure and Related Problems, SIAM J. Applied Math, 45 (1985), 780-797.

    Article  MATH  MathSciNet  Google Scholar 

  68. S. Moskow and M. Vogelius, First Order Corrections to the Homogenized Eigenvalues of a Periodic Composite Medium: A Convergence Proof, Proc. Roy. Soc. Edinburgh, A, 127 (1997), 1263-1299.

    MATH  MathSciNet  Google Scholar 

  69. S. Moskow and M. Vogelius, Metric based up-scaling, Comm. Pure and Applied Math., 60 (2007), 675-723.

    Article  Google Scholar 

  70. A. Pankov, G-convergence and homogenization of nonlinear partial differential operators, Kluwer Academic Publishers, Dordrecht, 1997.

    Google Scholar 

  71. W. V. Petryshyn, On the approximation-solvability of equations involving A-proper and pseudo-A-proper mappings, Bull. Amer. Math. Soc., 81 (1975), pp. 223–312.

    Article  MATH  MathSciNet  Google Scholar 

  72. O. Pironneau, On the Transport-diffusion Algorithm and its Application to the Navier-Stokes Equations, Numer. Math. 38 (1982), 309–332.

    Article  MATH  MathSciNet  Google Scholar 

  73. R.E. Rudd and J.Q. Broughton, Coarse-grained molecular dynamics and the atomic limit of finite elements , Phys. Rev. B 58, R5893 (1998).

    Article  Google Scholar 

  74. G. Sangalli, Capturing Small Scales in Elliptic Problems Using a Residual-Free Bubbles Finite Element Method, Multiscale Modeling and Simulation, 1 (2003), no. 3, 485–503

    Article  MATH  MathSciNet  Google Scholar 

  75. I. V. Skrypnik, Methods for analysis of nonlinear elliptic boundary value problems, vol. 139 of Translations of Mathematical Monographs, American Mathematical Society, Providence, RI, 1994. Translated from the 1990 Russian original by Dan D. Pascali.

    Google Scholar 

  76. T. Strinopoulos, Upscaling of immiscible two-phase flows in an adaptive frame, PhD thesis, California Institute of Technology, Pasadena, 2005.

    Google Scholar 

  77. T. Strouboulis, I. Babuška, and K. Copps, The design and analysis of the generalized finite element method, Comput. Methods Appl. Mech. Engrg., 181 (2000), pp. 43–69.

    Article  MATH  MathSciNet  Google Scholar 

  78. L. Tartar, Nonlocal Effects Induced by Homogenization, in PDE and Calculus of Variations, ed by F. Culumbini, et al, Birkhäuser, Boston, 925-938, 1989.

    Google Scholar 

  79. X.H. Wu, Y. Efendiev, and T. Y. Hou, Analysis of Upscaling Absolute Permeability, Discrete and Continuous Dynamical Systems, Series B, 2 (2002), 185-204.

    MATH  MathSciNet  Google Scholar 

  80. P. M. De Zeeuw, Matrix-dependent Prolongation and Restrictions in a Blackbox Multigrid Solver, J. Comput. Applied Math, 33(1990), 1-27.

    Article  MATH  Google Scholar 

  81. S. Verdiere and M.H. Vignal,Numerical and Theoretical Study of a Dual Mesh Method Using Finite Volume Schemes for Two-phase Flow Problems in Porous Media, Numer. Math. 80 (1998), 601–639.

    Article  MATH  MathSciNet  Google Scholar 

  82. T. C. Wallstrom, M. A. Christie, L. J. Durlofsky, and D. H. Sharp, Effective Flux Boundary Conditions for Upscaling Porous Media Equations, Transport in Porous Media, 46 (2002), 139-153.

    Article  MathSciNet  Google Scholar 

  83. T. C. Wallstrom, M. A. Christie, L. J. Durlofsky, and D. H. Sharp, Application of Effective Flux Boundary Conditions to Two-phase Upscaling in Porous Media, Transport in Porous Media, 46 (2002), 155-178.

    Article  MathSciNet  Google Scholar 

  84. T. C. Wallstrom, S. L. Hou, M. A. Christie, L. J. Durlofsky, and D. H. Sharp, Accurate Scale Up of Two Phase Flow Using Renormalization and Nonuniform Coarsening, Comput. Geosci, 3 (1999), 69-87.

    Article  MATH  Google Scholar 

  85. E. Zeidler, Nonlinear functional analysis and its applications. II/B, Springer-Verlag, New York, 1990. Nonlinear monotone operators, Translated from the German by the author and Leo F. Boron.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Efendiev, Y., Hou, T.Y. (2008). Multiscale Computations for Flow and Transport in Heterogeneous Media. In: Abdallah, N.B., Frosali, G. (eds) Quantum Transport. Lecture Notes in Mathematics, vol 1946. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79574-2_4

Download citation

Publish with us

Policies and ethics