Skip to main content

Quantum Hydrodynamic and Diffusion Models Derived from the Entropy Principle

  • Chapter
Quantum Transport

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 1946))

Abstract

In these notes, we review the recent theory of quantum hydrodynamic and diffusion models derived from the entropy minimization principle. These models are obtained by taking the moments of a collisional Wigner equation and closing the resulting system of equations by a quantum equilibrium. Such an equilibrium is defined as a minimizer of the quantum entropy subject to local constraints of given moments. We provide a framework to develop this minimization approach and successively apply it to quantum hydrodynamic models and quantum diffusion models. The results of numerical simulations show that these models capture well the various features of quantum transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ancona, M. G., Diffusion-Drift modeling of strong inversion layers, COMPEL 6, 11–18 (1987)

    Google Scholar 

  2. Ancona, M. G., Iafrate, G. J., Quantum correction of the equation of state of an electron gas in a semiconductor, Phys. review B, 39, 9536–9540 (1989)

    Article  Google Scholar 

  3. Ancona, M. G., Tiersten, H. F., Macroscopic physics of the silicon inversion layer, Phys. review B, 35, 7959–7965 (1987)

    Article  Google Scholar 

  4. Argyres, P. N., Quantum kinetic equations for electrons in high electric and phonon fields, Physics Lett. A, 171, 373–379 (1992)

    Article  Google Scholar 

  5. Arnold, A., Lopez, J. L., Markowich, P., Soler, J., An analysis of quantum Fokker - Planck models: A Wigner function approach, Rev. Mat. Iberoamericana, 20 771–814 (2004)

    MATH  MathSciNet  Google Scholar 

  6. Bardos, C., Golse, F., Mauser, N. J., Weak coupling limit of the N-particle Schrodinger equation, Methods Appl. Anal., 7, 275–293 (2000)

    MATH  MathSciNet  Google Scholar 

  7. Bardos, C., Golse, F., Gottlieb, A. D., Mauser, N. J., Mean field dynamics of fermions and the time-dependent Hartree-Fock equation, J. Math. Pures Appl., 82, 665–683 (2003)

    MATH  MathSciNet  Google Scholar 

  8. Bardos, C., Golse, F., Gottlieb, A. D., Mauser, N. J., Accuracy of the time-dependent Hartree-Fock approximation for uncorrelated initial states, J. Statist. Phys., 115, 1037–1055 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ben Abdallah, N., Degond, P., On a hierarchy of macroscopic models for semiconductors, J. Math. Phys., 37, 3306–3333 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ben Abdallah, N., Degond, P., Gnieys, S., An energy-transport model for semiconductors derived from the Boltzmann equation, J. Stat. Phys., 84, 205-231 (1996)

    Article  MATH  Google Scholar 

  11. Ben Abdallah, N., Unterreiter, A., On the stationary quantum drift-diffusion model, Z. Angew. Math. Phys., 49, 251–275 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Brenier, Y., Grenier, E., Sticky particles and scalar conservation laws, SIAM J. Numer. Anal., 35, 2317–2328 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bouchut, F., On zero pressure gas dynamics, in Advances in kinetic theory and computing, B. Perthame (ed), World Scientific (1994)

    Google Scholar 

  14. Burghardt, I., Cederbaum, L. S., Hydrodynamic equations for mixed quantum states I. General formulation, Journal of Chemical Physics, 115, 10303–10311 (2001)

    Article  Google Scholar 

  15. Burghardt, I., Cederbaum, L. S., Hydrodynamic equations for mixed quantum states II. Coupled electronic states, Journal of Chemical Physics, 115, 10312–10322 (2001)

    Article  Google Scholar 

  16. Burghardt, I., Moller, K. B., Quantum dynamics for dissipative systems: a hydrodynamic perspective, Journal of Chemical Physics, 117, 7409–7425 (2002)

    Article  Google Scholar 

  17. Burghardt, I., Parlant, G., On the dynamics of coupled Bohmian and phase-space variables, a new hybrid quantum-classical approach, Journal of Chemical Physics, 120, 3055–3058 (2004)

    Article  Google Scholar 

  18. Car, R., Parrinello, M., Unified approach for molecular dynamics and density-functional theory, Phys. Rev. Lett., 55, 2471–2474 (1985)

    Article  Google Scholar 

  19. Chen, R-C., Liu, J-L., A quantum corrected energy-transport model for nanoscale semiconductor devices, J. Comput. Phys., 204, 131–156 (2005)

    Article  MATH  Google Scholar 

  20. Degond, P., Mathematical modelling of microelectronics semiconductor devices, AMS/IP Studies in Advanced Mathematics, AMS Society and International Press, 77–109, (2000)

    Google Scholar 

  21. Degond, P., Gallego, S., Mhats, F., An entropic quantum drift-diffusion model for electron transport in resonant tunneling diodes, J. Comp. Phys., to appear

    Google Scholar 

  22. Degond, P., Gallego, S., Mhats, F., Isothermal quantum hydrodynamics: derivation, asymptotic analysis and simulation, manuscript, submitted

    Google Scholar 

  23. Degond, P., Mhats, F., Ringhofer, C., Quantum energy-transport and drift-diffusion models, J. Stat. Phys., 118, 625–667 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Degond, P., Mhats, F., Ringhofer, C., Quantum hydrodynamic models derived from the entropy principle, Contemp. Math., 371, 107–131 (2005)

    Google Scholar 

  25. Degond, P., Ringhofer, C., Quantum moment hydrodynamics and the entropy principle, J. Stat. Phys. 112, 587–628 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  26. Degond, P., Ringhofer, C., A note on quantum moment hydrodynamics and the entropy principle, C. R. Acad. Sci. Paris Ser 1, 335, 967–972 (2002)

    MathSciNet  Google Scholar 

  27. de Falco, C., Gatti, E., Lacaita, A. L., Sacco, R., Quantum-Corrected Drift-Diffusion Models for Transport in Semiconductor Devices, J. Comput. Phys., 204 533–561 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Dreizler, R. M., Gross, E. K. U., Density Functional Theory, Springer, Berlin (1990)

    MATH  Google Scholar 

  29. E, W., Rykov, Y. G., Sinai, Y. G., Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics, Comm. Math. Phys. 177, 349–380 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  30. Fischetti, M. V., Theory of electron transport in small semiconductor devices using the Pauli Master equation, J. Appl. Phys., 83, 270–291 (1998)

    Article  Google Scholar 

  31. Fromlet, F., Markowich, P., Ringhofer, C., A Wignerfunction Approach to Phonon Scattering, VLSI Design, 9, 339–350 (1999)

    Article  Google Scholar 

  32. Gallego, S., Mhats, F., Entropic discretization of a quantum drift-diffusion model, SIAM J. Numer. Anal., 43, 1828–1849 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  33. Gallego, S., Mhats, F., Numerical approximation of a quantum drift-diffusion model, C. R. Math. Acad. Sci. Paris, 339, 519–524 (2004)

    MATH  MathSciNet  Google Scholar 

  34. Gardner, C., The quantum hydrodynamic model for semiconductor devices, SIAM J. Appl. Math. 54, 409–427 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  35. Gardner, C., Ringhofer, C., The smooth quantum potential for the hydrodynamic model, Phys. Rev. E 53, 157–167 (1996)

    Article  Google Scholar 

  36. Gardner, C., Ringhofer, C., The Chapman-Enskog Expansion and the Quantum Hydrodynamic Model for Semiconductor Devices, VLSI Design 10, 415–435 (2000)

    Article  Google Scholar 

  37. Gasser, I., Markowich, P. A., Quantum Hydrodynamics, Wigner Transforms and the Classical Limit, Asympt. Analysis, 14, 97–116 (1997)

    MATH  MathSciNet  Google Scholar 

  38. Gasser, I., Markowich, P. A., Ringhofer, C., Closure conditions for classical and quantum moment hierarchies in the small temperature limit, Transp. Th. Stat. Phys. 25 409–423 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  39. Hohenberg, P., Kohn, W. Inhomogeneous electron gas, Phys. Rev. B, 136, 864–871 (1964)

    Article  MathSciNet  Google Scholar 

  40. Jngel, A., Matthes, D., A derivation of the isothermal quantum hydrodynamic equations using entropy minimization, ZAMM Z. Angew. Math. Mech., 85, 806–814 (2005)

    Article  MathSciNet  Google Scholar 

  41. Jngel, A., Matthes, D., Milisic, P., Derivation of new quantum hydrodynamic equations using entropy minimization, submitted

    Google Scholar 

  42. Jngel, A., Pinnau, R., A positivity preserving numerical scheme for a fourth order parabolic equation, SIAM J. Num. Anal., 39, 385–406 (2001)

    Article  Google Scholar 

  43. Kaiser, H-C., Rehberg, J., On stationary Schrdinger-Poisson equations modelling an electron gas with reduced dimension, Math. Methods Appl. Sci., 20, 1283–1312 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  44. C. Le Bris (ed), Handbook of numerical analysis. Vol. X. Special volume: computational chemistry, North-Holland, Amsterdam (2003)

    Google Scholar 

  45. Levermore, C. D., Moment closure hierarchies for kinetic theories, J. Stat. Phys., 83, 1021–1065 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  46. Luzzi, R., untitled, electronic preprint archive, reference arXiv:cond-mat/9909160 v2 11 Sep 1999

    Google Scholar 

  47. Lions, P-L., Paul, T., Sur les mesures de Wigner, Rev. Mat. Iberoamericana, 9, 553–618 (1993)

    MATH  MathSciNet  Google Scholar 

  48. Lopreore, C. L., Wyatt, R. E., Quantum Wave Packet Dynamics with Trajectories, Phys. Rev. Lett., 82, 5190–5193 (1999)

    Article  Google Scholar 

  49. Maddox, J. B., Bittner, E. R., Quantum dissipation in the hydrodynamic moment hierarchy, a semiclassical truncation stategy, J. Phys. Chem. B, 106, 7981–7990 (2002)

    Article  Google Scholar 

  50. Markowich, P. A., Mauser, N. J., The classical limit of a self-consistent quantum-Vlasov equation in 3D, Math. Models Methods Appl. Sci., 3, 109–124 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  51. Micheletti, S., Sacco, R., Simioni, P., Numerical Simulation of Resonant Tunnelling Diodes with a Quantum-Drift-Diffusion Model, Scientific Computing in Electrical Engineering, Lecture Notes in Computer Science, Springer-Verlag, pp. 313–321 (2004)

    Google Scholar 

  52. Morozov, V. G., Röpke, G., Zubarev’s method of a nonequilibrium statistical operator and some challenges in the theory of irreversible processes, Condensed Matter Physics, 1, 673–686 (1998)

    Google Scholar 

  53. Nier, F., A stationary Schrdinger-Poisson system arising from the modelling of electronic devices, Forum Math., 2, 489–510 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  54. Nier, F., A variational formulation of Schrdinger-Poisson systems in dimension d ≤ 3, Comm. Partial Differential Equations, 18, 1125–1147 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  55. Nier, F., Schrdinger-Poisson systems in dimension d ≤ 3: the whole-space case, Proc. Roy. Soc. Edinburgh Sect. A, 123, 1179–1201 (1993)

    MATH  MathSciNet  Google Scholar 

  56. Pinnau, R., The Linearized Transient Quantum Drift Diffusion Model - Stability of Stationary States, Z. Angew. Math. Mech., 80 327–344 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  57. Pinnau, R., Unterreiter, A., The Stationary Current-Voltage Characteristics of the Quantum Drift Diffusion Model, SIAM J. Numer. Anal., 37, 211–245 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  58. Pirovano, A., Lacaita, A., Spinelli, A., Two-Dimensional Quantum effects in Nanoscale MOSFETs, IEEE Trans. Electron Devices, 47, 25–31 (2002)

    Article  Google Scholar 

  59. Spohn, H., Large scale dynamics of interacting particles, Springer, Berlin (1991)

    MATH  Google Scholar 

  60. Wyatt, R. E., Bittner, E. R., Quantum wave packet dynamics with trajectories: Implementation with adaptive Lagrangian grids, The Journal of Chemical Physics, 113, 8898–8907 (2000)

    Article  Google Scholar 

  61. Zubarev, D. N., Morozov, V. G., Röpke, G., Statistical mechanics of nonequilibrium processes. Vol 1, basic concepts, kinetic theory, Akademie Verlag, Berlin (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Degond, P., Gallego, S., Méhats, F., Ringhofer, C. (2008). Quantum Hydrodynamic and Diffusion Models Derived from the Entropy Principle. In: Abdallah, N.B., Frosali, G. (eds) Quantum Transport. Lecture Notes in Mathematics, vol 1946. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79574-2_3

Download citation

Publish with us

Policies and ethics